
FINANCIAL
MIDDLEWARESPECTRA

Volume15 Report4

Contents November 2001

2 Cross border trade order routing and settlement
using middleware
Marcus Consolini, Director of Operations, Tigerex

8 Automating error correction and repair at
HypoVereinsbank
Michael Wiedemann, Head of Operations and Technology,
Regional Service Centre Europe, HypoVereinsbank

13 Integration banking — using middleware to integrate
a network-centric banking strategy
Mark Allcock, Senior Partner and CEO, TMC Alliance

18 Addressing pitfalls with EJB development and deployment
across different J2EE application servers
Dan Rolnick, Senior Consultant, Cacheon

24 Application brokers or application servers:
a 21st Century dilemma
Charles Brett, President, C3B Consulting and President,
International Advisory Board, MIDDLEWARESPECTRA

30 The state of business rules
Martin West, Vice President of Research and Development,
SpiritSoft

36 A reality check for .NET and J2EE Web Services
Mark Creamer, Consultant

42 Model Driven Architecture
Tom Welsh, Consultant

incorporating Enterprise Middleware

Cross border trade order

routing and settlement using

middleware

Marcus C. Consolini
Director of Operations
Tigerex

Management introduction
Tigerex is a privately owned company headquartered in Sydney (Australia) with opera-
tions in London, Hong Kong and New York. Tigerex is in the business of international
order routing for securities transactions — essentially providing a single point of access
to more than 40 markets, including the NYSE, NASDAQ, LSE, TSE, HKEX and SGX.

Marcus Consolini is Tigerex’s Director of Operations. He joined Tigerex prior to it having
an active business and his role was (and is) to:

oversee the Operations of the company
oversee the design of the technology platform
institute the detailed back office procedures across the globe
once the technology platform was built, implement the technology into
both clients and market execution brokers.

In this case study he discusses the technology choices made, including changes made at
the start and why these occurred. He also describes how the Sybase (New Era Of Net-
works) e-Biz Integrator message broker is used, as well as lessons learned.

2

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2001 Spectrum Reports Limited

Tigerex
Tigerex is a cross-border order routing company that was
created and developed by two individuals who were the
founders of the Trade Point Exchange in London — the
largest private equity market in the world. After establish-
ing the Trade Point Exchange (now known as Virt-X), they
conceived the idea of building order routing conduits for
international cross border securities trading.

Tigerex is the delivery of that concept. It provides two basic
services:

the first is a technology-based service which is,
in itself, a middleware system with links going
out to clients and market execution brokers
(MEBs — the likes of JP Morgan Chase, SSB and
other such leaders)
the second part of the business is introducing
relationships between local brokers and MEBs.

In practice what we are trying to offer is an end to end
solution so that geographically local brokers can exploit the
automated execution capabilities that Tigerex and the
MEBs possess. It is the local broker which initiates a trade
on behalf of its client. It is the MEB which:

receives that client’s instruction
executes it in the appropriate market.

Customers
Our customers come in two flavors. There are the B and C
tier brokerage houses that tend to operate in a local
domain, rather than on a global basis. Their need is to be
able to execute securities transactions on exchanges and
using instruments that are beyond their traditional, and
authorized, locale. For example, we have brokers in Hong
Kong who want to fulfill their clients’ orders against securi-
ties being traded in London or New York or Sydney. With-
out Tigerex, they would not be able to trade direct.

Previously, these local brokers, or brokerage houses — pre-
Tigerex — have not had access to international markets,
other than by the traditional tedious and long winded
method of picking up the phone, sending a fax, going
through transfers of funds between banks and other con-
ventional processes. But this takes upwards of 20 days
from initiation through to clearing and settlement. This is
not good enough for the clients of those local brokerages.
It leaves them (the local brokers) at a disadvantage com-
pared to the Merrill Lynchs of the world, which have their
own offices in most markets as well as the capability to
drive straight through processing (STP) between their
offices and markets.

The second group of customers are the MEBs themselves.
Their interest is simple — additional trade volumes to
exploit their investment in trading and settlement systems.

The Tigerex client is, therefore:

on one side — the B or C tier broker which
wants electronically to trade securities on
remote markets but has not had this capability
on the other — the A tier brokerage houses
(the MEBs) which can provide the execution
and want the extra traffic.

What we are not ...
and what we provide
We are not, however, an exchange. Nor are we an ECN.
Nor are we a broker channel.

What we offer is the technology to enable transactions to
take place and the initiation of the relationships between
the client and the MEB. The trade relationship — between
the brokerages on each side of a transaction — exists out-
side of Tigerex, between the B and C tier brokers and the
MEB.

Instead, what we do is:

’introduce’ the parties
supply and install the technology to assist the
trades to occur.

We provide electronic communication between the B or C
tier brokerage — which originate the trades — and the A
tier ones, which provide the execution. Both sides win. The
B and C tier brokerage houses deliver more and faster ser-
vices to their clients while the A tier brokerage obtains
additional, automated trades, which they might not other-
wise have received.

Finally, by using automation, we streamline the whole mes-
sage control and trade transfer process. In effect, by plug-
ging into the Tigerex service, our customers (at each end)
introduce STP into their operations, thereby reducing their
costs. Plus, we provide external liquidity outside local mar-
kets.

The Tigerex business model
Our business model is based on electronic communication
using industry standard protocols, like the FIX message for-
mat. Orders are routed between the originating local bro-
ker and MEBs. They are delivered on an automated straight

Cross border trade order routing and settlement using middleware

3

through basis once the originating message has been
appropriately formatted at the source. The advantage of
this is that, on arrival at an MEB, the order (depending on
the market) can be passed electronically into the market for
execution.

As we are not a party to each transaction, we obtain our
income by charging a fee per executed trade. So long as
there is at least a partial fill of an order, we regard this as an
execution of trade — and a charge is made. (All subse-
quent partial fills are not charged: we are paid by execu-
tion, not per message.)

Thus, if you are a broker in Hong Kong who has a client
who wants to buy 1,000 Rolls Royce shares in London but
had no previous access to London except by the old meth-
ods, you would sign up with Tigerex. Once you were estab-
lished (and using the Tigerex Network) you would place the
order through Tigerex which goes to a Tigerex MEB in Lon-
don. The MEB would purchase the 1,000 Rolls Royce
shares and pass the settlement and ownership details back
to you, the broker in Hong Kong.

The transaction relationship is between you in Hong Kong
and the MEB in London. The core of Tigerex’s business is
the movement and control of the messages which support
each transaction from Hong Kong to London and from
London back to Hong Kong.

But this is not all we do. We also establish the business
forum whereby you, the Hong Kong broker, and the Lon-
don MEB can meet and exchange mutually comprehensible
and reliable communications (messages). The important
factor here is that we are not just about technology. We
provide a financial service which ‘introduces’ brokers from
different parts of the global financial community to each
other.

I guess another way to describe us is that we are a financial
services company that specializes in technology. If you are a
broker in Hong Kong which has never dealt with London or
New York (other than by traditional paper-based means),
we open the door to mutual electronic communication.
This is different because:

financial technology houses do not generally
make the business introductions
financial institutions do not usually want to
provide the technology.

The reason we can do this is because of the diversity of
relationships which our founders and owners have — and
the respect they enjoy globally.

The technology challenges
Setting up the Tigerex technology platform has been a fast
and furious operation. Before I came on board, in Novem-
ber 2000, I was living in New York City working on Wall
Street for American Express Consulting Services. When I
arrived here in Sydney, we had a technology partner who
was in line to build what — at that time — the Company
had thought to be appropriate for the services we would
be offering.

My first step was to undertake an immediate review of the
plans — primarily because I (and other recent joiners) were
basically newcomers to the scene. Not only did we review
what was planned but we undertook an immediate evalua-
tion to determine which were the best vendors out in the
market place that had solutions appropriate to our needs.

So, even though we joined up with a plan already in place,
our evaluation suggested we needed an alternative solu-
tion. Our analysis indicated that the original middleware
component was not ideal, and we were looking for a best
solution. Equally, it was apparent that the intended
provider’s expertise was more concerned with front end
integration than with message management. Yet, without
message management, it was not clear to us that the front
end integration would ever occur. Looking back, the initial
plan was inappropriately focused rather than wrong — and
we will probably use that original organization for a differ-
ent, subsequent, part of our future systems.

The first challenge was, therefore, to figure out which ven-
dor should assist us — outside of our own internal devel-
opment — to build the foundation middleware messaging
platform on which we could then implement the Tigerex
system. We did nothing profoundly different to normal
here. We produced an RFP. From this we created our own
vendor matrices to determine, based on our requirements,
which vendor that we had contacted best satisfied our
needs. Those needs covered a variety of requirements,
from the ability to support us internationally through to
technology specifics.

Three vendors emerged from this process and we began
negotiations with the top three to see what the relative
price points would be. From there we were able to select
the vendor that suited us best from both technological and
business viewpoints. This turned out to be New Era of Net-
works (now part of Sybase) with its e-Biz Integrator.

Technological attractions
e-Biz Integrator had a couple of key technological attrac-
tions for us. Most importantly we had made the decision

4

that all messaging that we would be conducting would use
the FIX format. (We had also decided that we would not
cover, at least initially, post-trade communication — like
that associated with dividends, stock splits, etc.).

Indeed, the original attraction to us of New Era of Net-
works centered on its FIX solution. At that time we were
not actually looking at e-Biz Integrator as a middleware
platform. Indeed, we were looking at another vendor to
provide that part of the messaging middleware.

In our discussions with New Era we discovered the e-Biz
Integrator and its capability to reformat and route mes-
sages. We then realized that New Era not only had the FIX
capabilities but that these would work with the e-Biz Inte-
grator message broker. It did not take us long to see that
one vendor could supply both requirements — FIX and
message routing/reformatting — and thereby provide the
middleware foundation (Figures 1.1 and 1.2).

In addition, New Era’s support for at least one industry
standard messaging model — in this case IBM’s MQSeries
— was significant. The financial sector uses MQSeries
extensively. It is familiar with it and it (MQSeries) is per-
ceived to offer reliable, once-only transport of messages.
By selecting a vendor which exploited MQSeries, we knew
we were making adoption of our solutions by our cus-
tomers easier.

So what we bought into were:

the FIX Adapter, from Sybase/New Era
the e-Biz Integrator with its reformatting and
rules/routing capabilities, from Sybase/New
Era

MQSeries, from IBM, as the guaranteed mes-
sage transport
the Internet (of which more later).

Using the messaging
middleware and message broker
One of the great advantages for us of the New Era solution
is that it enables multiple different shapes of solution,
depending on the type of environment and customer. For
example, we have the choice — going from the simplest to
the most complex extreme — of:

only having one central e-Biz Integrator,
through which everything goes
placing e-Biz Integrators as concentrators/hubs
in each geographical location (say Hong Kong,
Singapore, Sydney, London, etc.) — linked to
multiple customers in these geographies
locating an e-Biz Integrator on each customer’s
site
any combination, or variation, of these.

In practice the first — the centralized solution — ran the
risk of exposing us (and our customers) if there was a seri-
ous hub failure. That was not acceptable.

The third, locating an e-Biz Integrator hub on each cus-
tomer’s premises, is really only an option for those cus-
tomers which have high volumes or already have an e-Biz
Integrator (or MQSeries Integrator) installation. Typically,
these are most likely to be found at MEBs in the major New
York, London and Tokyo markets — rather than in B or C
tier brokers. Of course, the latter could generate sufficient
volumes to warrant their own e-Biz Integrator platform.
We would be delighted and this is helped by the fact that

Cross border trade order routing and settlement using middleware

5

Investors

Local

Broker

Global

Equity Markets

NASDAQ NYSE

TSE HKEX SGX

ASX LSE

etc.

Global
Equity Markets

NASDAQ NYSE

TSE HKEX SGX

ASX LSE

etc.

Securities Execution

FOREX Execution

Clearing & Settlement

Custody

TIGEREX
SOLUTION

Figure 1.1: Middleware foundation I

X-Platform

A

A

A

G

Execution
Brokers

FOREX
Partners

Custodians

A

Order
Mgmt

System

Web
Server

Web
Server

Local Broker

Back
Office G

Legend

Tigerex systems

Client systems

FIX / SWIFT
Messaging

Proprietary
Messaging

Client Integration
Gateway

Partner Integration
Adapters

A

G

Real-time
Data

Archive
Analysis

Data
Process

X-Base

Figure 1.2: Middleware foundation II

e-Biz Integrator runs on a variety of operating systems,
from low end Windows NT/2000 through to AIX, Solaris
and even mainframes.

What we decided to do was introduce the second
approach. We place an e-Biz Integrator hub in each geo-
graphical location where there is sufficient justification.
These hubs are then interconnected by our own private
network, over which the messages flow.

This has several advantages:

customers only have to make a local call, to a
dedicated number
response times are short and fast (no long line
delays)
multiple hubs provide some measure of redun-
dancy (if one hub is down it does not bring all
connections down)
we can work with each customer on an indi-
vidual basis; this matters where (for example)
they might not natively support FIX and we
have to include specific reformatting and rules
to put messages into FIX for transmission out
(and then from FIX back into the customer for-
mats on the way back to the customer’s sys-
tem)
it can work with customers having their own
e-Biz Integrator hub.

We can also use different transport protocols from the cus-
tomer to the local hub, although all hub-to-hub communi-
cation — and most hub to MEB communication — is in FIX
format. For example, some customers wish to generate
messages in FIX format which can be carried by MQSeries
to the hub. Others, in contrast, already use FIX engines or
wish us to receive a file or message and then convert
to/from FIX for them. All are possible and we manage to
exploit the fact that FIX possesses two layers, a session layer
(for handshaking and log-on/off) and an application layer
(for the orders, etc.).

We go one stage further. We support a browser connec-
tion to our hubs. The customer, over a secure connection,
uses a Web-based user interface to submit trades to
Tigerex. We accept the trade and format it into FIX before
transmission to the destination. This ‘Tigerex Direct’ (as we
call it) interface enables real time trading, albeit with lim-
ited reporting and administrative functions. It has the addi-
tional disadvantage that it does not provide STP integration
to the customer’s front or back office systems. On the
other hand it attracts; there is no need to undertake all the
internal systems integration effort that STP demands.

Downsides, and achievements
The only downside which we worried about was that locat-
ing hubs on a dispersed basis meant that we would need to
have people in many places. Here Sybase/New Era has
assisted us. It provides professional services where we need
additional resources on the messaging foundation, and its
related formats and routing. We can contract it to provide
integration to customers’ existing systems where they need
it. Although we know our part of the solution well (from
our development HQ in Sydney), Sybase/New Era knows its
own software better than we do (at least for the moment).

Having the option to obtain additional and technologically
competent resources at short notice is valuable. It applies
particularly where we need to map new inputs and outputs
into the e-Biz Integrator Formatter. Furthermore, such
mapping tends to be a one-off exercise: once captured it
can be re-used (by us and by Sybase/New Era).

On the other hand, the one area we reserve to our own
people — for obvious reasons — is that which is specific to
our solutions and clients, whether B or C tier or MEBs. And
the measure of our success, if I may put it that way, is that
we have gotten up and running in less than 8 months.

Size of operation
In Sydney we are about 21 people, mostly development but
with a local business operation of about 6 (of that 21). We
have already a presence in Hong Kong and London — each
with about 4-5 staff. In addition to these we have regional
directors who represent the company in our target mar-
kets, and make the introductions between the B and C bro-
kers and the MEBs. They smooth the way forwards.

We do not anticipate needing to add hugely to these num-
bers. One of the attractions of our business model is that,
once an MEB or broker has become a customer and his or
her systems have been linked to our e-Biz Integrator hubs
— then the traffic flows. Yes, we see ourselves expanding
into New York, Tokyo, San Francisco and other places but
only a few staff are needed in each, once the connections
are made.

Indeed, if you think about it, we offer a simple service. We
do not put any software on anybody’s site (although we
can). Our customers format FIX messages which they com-
municate to our hubs. We look after the connections from
there on. That is our business and we can usually have a
new customer up and running, from start to finish, in 4-6
weeks, or less (see Figure 1.3); and this includes connecting
direct from/to their systems to our hubs plus the contrac-
tual arrangements between all parties.

6

Tigerex futures and settlement
We have not stopped at order execution. We do offer for-
eign exchange capabilities. But even more importantly we
have introduced post trade clearing and settlement — nor-
mally the killer for securities. What used to happen — pri-
marily because the transaction relationship exists between
the B or C broker and the MEB — was that the MEB’s exist-
ing settlement process was used, even if this meant faxes
or email or letters.

This opened up a whole different ball game for us. Today
the messages that the MEB sends back to the client for
post trade settlement can actually go through our links.
What we have designed is a system which is S.W.I.F.T.
enabled. We have filed for a S.W.I.F.T. Bureau Licence and
hope to become a S.W.I.F.T. Service Bureau Member
soon.

This has many implications. Not only will we be able to
handle S.W.I.F.T. formats (using the Sybase/New Era
S.W.I.F.T. Adapter running with e-Biz Integrator) but we
will be bringing the strengths and virtues of S.W.I.F.T. to
those of our clients who may not wish to incur the heavy
integration costs associated with S.W.I.F.T. Tigerex will pro-
vide the integration to the S.W.I.F.T. network and our clients
will receive the S.W.I.F.T. messages from us.

The result is that our local brokers can receive MEB-issued
end-of-day trade confirmations for each order executed.
The configuration is issued in the currency in which the
security was traded — with the delivery options as varied as
S.W.I.F.T., OASYS, fax, email or even ‘plain old’ telex. In the
future we are even thinking of how to accommodate any
third party custodian relationships that the local broker has
in place.

Lessons learned
The first lesson is that we were right to undertake that
review when we arrived. The original plan was not likely to
deliver a result as resilient or flexible as that we have now
implemented.

We have proved that you can create an order routing net-
work with off-the-shelf software and that applying a FIX
format works. We were on time and budget with delivery.

From a software tools perspective we have had the usual
unexpected issues you encounter with all software — but
nothing that halted us. We are pretty satisfied.

We also proved one dimension to ourselves. In all our
working with third parties we had two estimates — the
one that everyone knew and the one we budgeted for and
scheduled. Consistently, our internal scheduling (at about
twice what others estimated) was correct. Fortunately we
had anticipated this and were not caught out.

Management conclusion
Tigerex demonstrates what can be achieved, and in a short
time, with a message broker. In the Tigerex instance this
was not broking between applications within one organi-
zation but between applications running in multiple orga-
nizations (the MEBs and local dealers/brokerages).

In addition, Tigerex supports financial instruments. It is
about ‘money’. If an organization can deliver such capabili-
ties securely and reliably using a middleware platform like
e-Biz Integrator (and its associated FIX and S.W.I.F.T.
adapters), other organizations can reasonably have the
confidence that they could achieve the same.

Cross border trade order routing and settlement using middleware

7

Notes:
1

2

STAGES:

Notify of all system or
integration failures
Communicate
functional goals and
features for upgrade

Review business
requirements
Determine general
implementation
timeline

Planning

Operations Dedicate project staff
Review technical
requirements
Outline integration
issues
Approve feasibility of
general milestones

Adapt systems for
international trade
capability
Install
communications link
to local Tigerex POP
Integrate to X -
system

Develop testing model
Set up availability for
testing
Conduct test

Sign LOI / MOU
Discuss Tigerex
contract details
Discuss third party 1
contract details

Complete contracts Provide approved
Tigerex certification

Present and review
Tigerex client kit
Provide oversight and
support for integration
issues

Identify testing
requirements
Provide oversight and
support for testing
issues

Contractual

3. Testing
(2-3 weeks)

2. Development
(6-8 weeks)

Provide 24/7 customer
support
Maintain system and
issue upgrades

Contract with
additional execution
partners

1. Discovery
(2-3 weeks)

4. Support
(ongoing)

STAGES:

Review business
requirements
Determine general
implementation
timeline

Dedicate project staff
Review technical
requirements
Outline integration
issues
Approve feasibility of
general milestones

Adapt systems for
international trade
capability
Install
communications link
to local Tigerex POP
Integrate to X -
system

Sign LOI / MOU
Discuss Tigerex
contract details
Discuss third party 1
contract details

Complete contracts

Present and review
Tigerex client kit 2

Provide oversight and
support for integration
issues

3. Testing
(2-3 weeks)

2. Development
(6-8 weeks)

1. Discovery
(2-3 weeks)

4. Support
(ongoing)

Third party contracts include those for
market execution brokers, custodians
and FOREX partners. These contracts
are standardized by Tigerex and are
tailored to client requirements. A price
ceiling can also be negotiated.

The Tigerex client kit includes white
papers, APIs, architectural information,
use cases, integration requirements and
standardized third party contracts.

Figure 1.3: Adding a new customer

Automating error

correction and repair at

HypoVereinsbank

Michael Wiedemann
Head of Operations and Technology
Regional Service Centre Europe
HypoVereinsbank

Management introduction
HypoVereinsbank (HVB) is the second largest bank in Germany and is headquartered in
Munich. Globally, it ranks about number 15 — based on assets. It has about 72000
employees worldwide, mainly located in Europe. The retail side is concentrated primar-
ily in Germany, Austria (where it recently purchased Bank Austria) and Poland. It has
wholesale financial operations in the major global centers — like London, New York,
Tokyo, Hong Kong and Singapore.

Michael Wiedemann is the regional director responsible for the London Regional Ser-
vice Centre, which also supports operations in six other European countries — Greece,
Italy, France, Ireland, Lithuania and Latvia. The Regional Service Centre provides the
operational and IT support for the Bank’s activities in this geography.

In this interview, Mr. Wiedemann discusses the Bank’s use of the PaceMaker work-flow
monitor as a means to monitor transactions as they move between front office and
back office systems. As he describes, PaceMaker now plays a significant role in reduc-
ing errors and failed transactions as well as improving their repair and successful resub-
mission.

8

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2001 Spectrum Reports Limited

Our business challenge
The basic business issue that all operations centers face is
that, as you introduce more and more data processing
across ever increasing numbers of different business sys-
tems, it becomes ever more difficult to keep databases syn-
chronized. If the data is processed straight-through or
manually — the challenge is the same. Why does this mat-
ter? First of all, data inconsistency among the various front
and back-office systems increases operational risk.

The second reason is that the German regulatory authori-
ties now require its banks to ensure that information, and
thereby the databases, are synchronized on a regular basis.
Indeed, that is the minimum requirement. Ideally, we want
to ensure that databases are synchronized on a real time
basis, in order to minimize risk exposure across all of our
activities.

HVB systems
Like most other financial institutions we have a wide range
of different systems. The major ones here in London
include:

Kondor+, for foreign exchange, money market
and liquidity management
INTAS, for the remaining interest and deriva-
tive products
MIDAS, for back office, accounting and regula-
tory reporting.

What we need is for our various systems to work together,
and to be synchronized. We want to have STP, from when
the front office enters the deal or trade through to the back
office including settlement (Figure 2.1).

Historically, however, much of the processing has had a
manual element. This can result in the same data needing
to be input into multiple systems. There is an acute need,
therefore, to check for internal processing errors. This is

most important before deal or trade details are sent out as
confirmation of those deals and trades. The (fairly obvious)
reason is that the quality of what you send out has a major
impact on the speed and accuracy of subsequent activities.

We want to send out accurate confirmations to our
counter parties so that the matching is faster and more
accurate. The automatic matching of outgoing and incom-
ing confirmations completes the cycle.

Front and back office differences
So, returning to the business problem, our real issue lay
between our front office and our back office systems
(between our back office and counter party systems there
are other confirmation checking products and processes in
place). Although it may seem improbable that your front
and back offices might not be aligned, the reasons are rel-
atively simple to understand. If inputs are made manually,
human errors do happen. Even if inputs are delivered via

Automating error correction and repair at HypoVereinsbank

9

MANAGEMENTMANAGEMENT

OPERATIONSOPERATIONS

SETTLEMENTSSETTLEMENTS

Head

Office

Reports

Regulatory

Reports

Deal

Capture

FX/MM

Back Office

Accounting

Settlement

Message Management

SWIFT & Settlements

Confs

Matching

Nostro

Matching

Netting

Deal

Capture

Capital

Markets

Deal

Capture

Other(s)

Risk

System

Other

Back

Office

Payments

Head
Office

Reports

Regulatory
Reports

Deal
Capture
FX/MM

Back Office
Accounting
Settlement

Message Management
SWIFT & Settlements

Confs
Matching

Nostro
Matching

Netting

Deal
Capture
Capital
Markets

Deal
Capture
Other(s)

Risk
System

Other
Back
Office

Payments

P
a
c
e
M
a
k
e
r

C
o
m
p
o
u
n
d

R
e
c
o
n
c
i
l
i
a
t
i
o
n

Figure 2.1: Front to back office at HVB

straight through processing, system errors or data mis-
matches can occur.

The reason for still performing manual input is that many of
the financial instruments in which we deal are complex,
specialized and do not necessarily happen continuously. It
is often not worthwhile, for the small numbers of these
deals, to build an STP sequence — the volumes are not suf-
ficient to warrant the expense of automation (even though
some inaccuracies may occur when manual input is under-
taken).

In such instances it is our experience that mistakes of
understanding happen. It is highly desirable that these
errors be caught early, and be corrected.

On the higher volume instruments, a different problem
arises. Put simply it is that ‘obvious’ mistakes are difficult to
pick out when you have a mass of similar deals. Yet such
errors cause subsequent problems of settlement, including
delays and their associated costs.

Finally, even though we have already automated many of
the links, the reality is that these do not necessarily work all
the time in all the ways expected. Attention is required if
we are to be both consistent and in line with market
requirements.

Introducing PaceMetrics
as a middleware monitor
I have described the basic problem — consistency. But a
different way of characterizing the problem is that we want
to have exceptions identified and resolved as quickly as
possible.

To achieve this we started to write our own solutions in-
house, particularly for our high volume products. Our
efforts here were successful, but it taught us that the effort
to deliver and maintain such solutions is great.

Then we came across a company called PaceMetrics, at a
trade show. PaceMetrics offered a ‘middleware’ product
(PaceMaker) that had the same objectives as those we had
built internally — except that it was designed with a friend-
lier and easier to use interface. This attracted us because
we felt it could automate the examination of deal informa-
tion and visually show on screen:

the deals that matched
the ones that did not match
the ones where there might be possible mis-
matches.

It also possessed drill down capabilities. These enable us to
see errors from a very high level down to (say) the individ-
ual fields in a trade or deal.

So we started to investigate the PaceMetrics offering. Our
justification was that we already understood how expen-
sive it was to build and maintain an in-house solution. In
addition, PaceMetrics looked as if it might provide a tool
which would enable us to keep a combined database to
hold information across all the systems in one place.

What PaceMaker does and how
The way PaceMaker works, at least for us, is as follows. Its
database runs on a separate RS/6000 system. It is fed by a
mix of communications. These range:

from database extraction programs that run at
regular intervals, for example every 5, 10, 15
minutes (using traditional client to server com-
munications)
to real-time links, updating PaceMaker as jour-
nals are updated.

Now think of a simple scenario consisting of:

a front office system (System A)
a back office system (System B).

The way that you typically connect two systems is to use
some form of middleware layer — like a publish and sub-
scribe messaging mechanism. The objective is that what
originates on the front office system should be transmitted
correctly to the back office system.

What PaceMaker offers is intermediate work flow process-
ing (Figure 2.2). You establish a data feed to/from each of
the systems you want to have checked. This data feed is
mapped into the PaceMaker database, including which
fields you wish to have checked, plus any calculations or
translations that you might require.

In addition you state the time interval in which you expect
activities to occur. For example you can set the interval time
between when a deal is input on System A and by when
you would expect that particular deal to appear on System
B. You can also set sequencing — the order in which you
expect particular actions to occur.

With transactions defined, you can enter a deal in the front
office. If you go immediately to PaceMaker, you will see
that there is no match as yet in the back office system (the
deal may not have made it across the communications link

10

between System A and System B). But, as long as you are
within the expected time interval, that transaction will not
show up as a problem — it will just show as a ‘yellow’,
meaning that something is waiting to happen.

If, however, the deal does not reach the back office system
(for whatever reason) within the expected time — or there
is a mismatch between the data sent by System A and what
System B is seeing — a red alert indicator would light up (if
all had been processed as expected OK, a green would
show). You can then click on this (or any) transaction to dis-
cover more detail, right down to the specific field level.

In addition, PaceMaker holds a complete transaction his-
tory — including previous changes, time logs, past values
and who did what and when. You can even see ‘incorrect
corrections’ — remedial actions which were themselves
incorrect.

What is so clever about this is that, with a PaceMaker sys-
tem, everything published by the front office to the back
office is ‘inspected’ and matched. Furthermore, the
descriptions of the transaction types, and supporting
details, are captured in the PaceMaker database.

By describing what the deal types are, and what you expect
to happen, you are monitoring the state of the databases
and catching those items where something is not happen-
ing or there is an error. In doing so you are reconciling your
databases and ensuring the consistency of data.

Back to HVB
What I described above encompasses what PaceMaker can
offer in a generic instance. Now let us return to the issues
at HVB.

As I said earlier we have two front office systems (Kondor+
and INTAS) and the MIDAS back office. Certain transac-
tions are required to be recorded on both front office sys-
tems as well as the back office one. For example, we have
interest-related instruments which include a cash compo-
nent. Such an instrument bridges the two front offices. We
need to hold all the parts if we are to maintain accurate

positions.

Clearly, we need both front office systems to be aligned
with each other, as well as with the back office. Equally, we
want to discover mismatches, failures of processing or out-
standing items as soon as possible. The attraction of a solu-
tion like that offered by PaceMetrics is that it can achieve
this as well. In the generic example I described above, there
was only one front office and one back office system. There
is no reason why there should not be several front or back
offices (or,any type of system) where monitoring is desir-
able in order to ensure that transactions are correctly sent
and received.

Indeed, one could go even further (although we have not).
It is technically conceivable that one could put in place a
PaceMaker implementation between us and counter par-

Automating error correction and repair at HypoVereinsbank

11

Event 2Event 2 � �� � � �

Event 3 4

Event 4 4

Event 5 4

Event 3 4Event 3 � �� � �

Event 4 � �� � � �

Event 5 �� � � � �

Event 1 4Event 1 4 �� � � �

R
a

te
1

D
e

a
l

R
e

f
C

o
u

n
te

rp
a

r t
y

I n
s t

r u
m

e
n

t

V
a

lu
e

D
a

te
A

m
o

u
n

t
M

a
tu

r i
ty

R
a

te
2

R
a

te
3

N
o

s t
r o

I n
c

o
m

in
g

C
o

n
f

B
ro

k
e

r
E

x
c

h
a

n
g

e

P
o

s t
e

d

R
a

te
1

D
e

a
l

R
e

f
C

o
u

n
te

rp
a

r t
y

I n
s t

r u
m

e
n

t

V
a

lu
e

D
a

te
A

m
o

u
n

t
M

a
tu

r i
ty

R
a

te
2

R
a

te
3

N
o

s t
r o

I n
c

o
m

in
g

C
o

n
f

B
ro

k
e

r
E

x
c

h
a

n
g

e

P
o

s t
e

d

R
a

te
1

D
e

a
l

R
e

f
C

o
u

n
te

rp
a

r t
y

I n
s t

r u
m

e
n

t

V
a

lu
e

D
a

te
A

m
o

u
n

t
M

a
tu

r i
ty

R
a

te
2

R
a

te
3

N
o

s t
r o

I n
c

o
m

in
g

C
o

n
f

B
ro

k
e

r
E

x
c

h
a

n
g

e

P
o

s t
e

d

Event 6
Event 7

X
44 4 4 4 4 4

Event 6
Event 7

X
44 4 4 4 4 4

Event 6
Event 7
Event 6
Event 7

X
44 4 4 4 4 4
X� X� � � � �

44 4 4 4 4 444 4 4 4 4 4

1 Min

2 H
12 H

5 Min
10 Min

24 H

1 Min

2 H
12 H

5 Min
10 Min

24 H

1 Min

2 H
12 H

5 Min
10 Min

24 H ?? ? ? ? ? ? ? ? ?? ? ???? ? ? ? ? ? ? ? ?? ? ??

�

�

�

�

�

�

PaceMaker Core
and Bank-defined
transaction details

Time-line

Figure 2.2: PaceMaker and real time compound reconciliation

ties — to ensure that both we and they received correct
data. The difficulty is more technological than practical:

who would own the information and the
responsibilities for chasing up failures?
would we be able to see confidential details at
a counter party, or vice versa?

Such issues may be insurmountable in the near term. More
likely is that, further down the road, we will use PaceMaker
to monitor responses as these came back from counter par-
ties — for example over S.W.I.F.T. or other networks. But
this would be in-house rather than across enterprise
boundaries.

How long and with what results?
We started some months back with a small implementa-
tion, applying it to a particular part of our derivatives oper-
ation. We chose to start here because:

the transaction volumes were not large, but
they were sufficient so that we could monitor
what was happening on a daily basis and there
was sufficient potential for a payback
the number of matching fields required would
be limited and could be accomplished at a rela-
tively low cost
we could draw conclusions about how long it
would take to add additional matching fields
(front office and back office)
we could check the results and ensure that
what we expected was actually occurring
we could still return to manual checking if
PaceMaker did not work out for us.

That initial trial was a success. We have now moved on, to
incorporate all our fixed income and derivative products in
PaceMaker. For Foreign Exchange and Money Markets we
have not introduced it because this is where we had built
our own internal system (thus this area has a lower priority
for the moment, although we intend to include it eventu-
ally). Instead we are extending the derivatives and fixed
income implementations to include various additional sys-
tems that we use. In so doing we are expanding the cover-
age so that we can see the status of our operations any
time during the day.

In terms of headcount we have indirectly saved on staffing
costs. This is because our volumes have been increasing. In
some areas the volumes has more than doubled. Yet we
still do our work with the same number of staff.

Lessons learned
Our experience has been positive. We have obtained what
we wanted. But one reason that this was possible was that
we could start small and grow: PaceMaker did not require
us to convert everything all at once. Rather we could try out
PaceMaker with a suitably sized implementation, observe
the results and draw conclusions. In addition, we have
been able to add to our implementation on an incremental
basis — when and where it suits us and our business.

The second lesson is that staff satisfaction has increased.
Looking at hundreds of transactions each day to try to find
errors is not the most interesting of tasks. Today Pace-
Maker identifies the problems for us. Our back office peo-
ple are happier now — because the focus has changed:

from searching for errors (not unlike searching
for needles in a haystack)
to actual exception processing.

This is much more rewarding. You can see that you are
making a difference.

I would like to make one additional point in this context of
my lessons learned, although strictly it is more of an obser-
vation based on common sense. Earlier I talked about Pace-
Maker as work flow monitor middleware. We also use a
different product (eFlow) for STP. This is deliberate. The
reason why we prefer to use two different products is that,
if we used only one product for processing and checking,
the likelihood that any logical mismatches would be discov-
ered would be remote. By using two systems — with sepa-
rate data feeds and business logic — we enhance our
control of operational risk. We think that this emphasizes
an aspect which is often overlooked — the importance of
having double checks or mechanisms to prove accuracy.

Management conclusion
Accuracy, consistency and completeness are almost always
the objective in IT. In the financial world this is particularly
important (even before you introduce regulatory require-
ments).

When you have multiple different systems which need to
be kept in sync., middleware alone (as in messages or
whatever) is insufficient. Furthermore, as Mr. Wiedemann
points out, you also need a ‘mechanism to check the mech-
anism’ if you are to be certain that everything is correctly
aligned. This is what HVB has achieved. Not only does it
have eFlow for STP but it uses PaceMaker to ensure that
deals are correctly processed on front and back office sys-
tems. These act as mutual double checks for accuracy.

12

13

Integration banking — using

middleware to integrate a net-

work-centric banking strategy

Mark S. Allcock
Senior Partner and CEO
TMC Alliance

Management introduction
In this third, of four, part series on the strategic use of middleware and integration
technology within the finance and banking market place, Mark Allcock, CEO of TMC
Alliance (which specializes in strategic integration consultancy for financial markets) dis-
cusses key service integration issues for the finance sector.

As will be seen, Mr. Allcock is passionate about the importance of addressing manage-
ment and organizational issues as part of all integration projects. He believes these
issues are as least as important as the technology and solution choices. At TMC
ALLIANCE he has enabled a number of major financial firms successfully to complete
business driven integration initiatives. He has direct experience with most of the leading
technology solutions in the marketplace today.

Each analysis in this series builds on the previous one. It includes hints and tips plus
comments on pitfalls that can be avoided.

Setting the scene
In the two previous analyses, I described the planning and
management guidance that we believe all companies
should follow prior to commencing any integration project.
For example, identifying key managers as well as undertak-
ing project planning and assessing risks (preferably at the
earliest possible stage in any major project) massively
improves the prospects of on-time, on-scope and on-
budget delivery.

Those two earlier analyses identified the key factors — that
can turn out to be the difference between failure and suc-
cess as being:

scope
skills
budget
time
plans
risks
rewards
capabilities
supply
demand
knowledge
dependencies.

Building on these, I will here present an alternative view-
point on integration, one which highlights the role of tech-
nologies and vendor solutions but asserts that these must
be applied in an appropriate setting for the consumer
(rather than the vendor) of financial services. In essence I
am arguing that a lifestyle oriented approach to integration
is the key to creating a successful end to end integrated
service for financial markets. Such an approach highlights
the importance of the network, and makes the need for
new XML message standards abundantly clear.

Integration banking
design: wind in the sails
Today’s financial market providers present a broad and
deep range of product, service and investment opportuni-
ties to clients who are:

increasingly mobile
decreasingly loyal to brands (in isolation)
more loyal to excellence in service and perfor-
mance.

Clients are, therefore, demanding more, rather than less.
Equally, consumers are more sophisticated with un-

14

Life stage Consumers’ financial needs

Pre-Birth.... Parents plan larger home
Parents build nursery
Parental school fee planning
Parents enhance medical care
Parental bank accounts

Birth.... Parent and child medical care
Parents increase credit needs
Parental bank accounts

Newborn... Parents increase credit needs
Children‘s nest egg savings
Parental bank accounts

Infant/
Kindergarten.... Parents increase credit needs

Children’s nest egg savings
Increased mortgage needs
Parental bank accounts

Elementary
School.... Parental bank accounts

Parents increase school investment
Parental home equity increasing
Increase mortgage needs to

accommodate larger family

Teenage years.... Parental bank accounts
Teenagers’ bank accounts
Teenagers’ savings
Parental home equity increasing
School fee investment draw down

High School.... Parents increase retirement asset
provisions

School fee investment draw down
College
pre-graduation.... Student loans

Bank overdraft
Credit card

Graduation.... Car loans
Car insurance
Credit card

First job.... Car loans
Car insurance
Home financing

Figure 3.1a: Financial life stages

paralleled access to information and knowledge about
products, opportunities and risks.

Much of this is being facilitated by their access to the Web.
The dynamics of our enterprise culture and global techno-
logical and communication advances — which is accelerat-
ing as we move into the 21st century — has created the
opportunity for distributing wealth amongst an increasingly
broad base of people spread across the globe.

Wealth management is a financial markets product princi-
ple that reflects the economic life stages of our families and
their financial needs. Banks, investment management
firms, supermarkets, retirement and life insurance compa-
nies all have a part to play in providing customer life cycle
products and services to today’s customers and clients (Fig-
ures 3.1a-b). This creates an incredible potential for those
financial service firms able to identify, capture and retain
the customer relationship over the customer’s lifetime. Yet
integration is often seen as a way of achieving this — by
piecing systems together to create the notion of an inte-
grated service or solution. The core pieces are certainly the
same but this view is too common and constraining a view
of integration. Integration is not a technology issue alone.

B2C, B2B, E2E really means C2G
True integration is about re-engineering business and prod-
uct services around the life stage needs of customers, con-
sumers and clients, irrespective of whether these are in a
classic B2C or B2B market place. Many technology compa-
nies now talk about E2E (end to end or enterprise to enter-
prise) initiatives. While such discussion is a start, a quantum
leap is still required to re-orient solutions:

around the financial expectations and needs of
customers, the consumer, throughout their life
time
rather than around ‘what the business would
like the customer to want’.

No one organization has the capability to provide such a
range of services and products. Yet, some are close. To us
the Swiss banks have come closest. They have evolved — in
our analysis — into one possessing the broadest product
and service capabilities. This is, in effect, the kernel of a
true integrated C2G (cradle to grave) solution.

Our analysis is that those vendors who can best be
expected to provide C2G solutions are unlikely to be soft-
ware technology companies. No matter how capable their
products, they simply do not possess, and cannot
provide, the combination of industry-specific experience,

Integration banking — using middleware to integrate a network-centric banking strategy

15

Life stage Consumers’ financial needs (cont.)

First job (cont.).... Credit cards
Store cards

Career
development.... Investment portfolio based on

liquid vanilla products (for example
mutual funds)
Venture capital/business finance and
extensive credit card finance for
entrepreneurial types

Significant mortgage
Tax efficient retirement portfolios and

pension wrappers
Major wealth creation

Career
established.... Mid-life crisis

Wealth enhancement
Portfolio of diverse and complex assets
Car loans
Divorce settlement

Career
maturity.... Significant home equity value

Inheritance income
Wrapper investment assets to risk

and tax balanced portfolio
Establish family and retirement trusts

Pre-retirement.... Mortgage debt discharged
Maximize investment opportunity
Downsize home
Career emphasis reduces

Retirement.... Release lump from retirement portfolio
Health care provision
Partial income draw down
Transfer assets to family/trust
Prepare for succession

Old age.... Release home equity
Income draw down to support

healthcare and attended lifestyle

Next generation
inheritance.... Assets transfer to family and friends

Family and friends commence
inheritance investment

Figure 3.1b: Financial life stages

products, services and delivery platforms needed to provide
true C2G solutions. [This explains their urgency in trying to
set up relationships with systems integrators and other pro-
fessional services organizations.]

The truth is that delivering C2G is about issues that are very
different from producing great software products. In our
experience, C2G involves an expertise and awareness
which only organizations routinely serving consumers every
day can achieve.

That is not to say that great technology companies do not
have a major role to play in providing C2G solutions: they
do. But success in C2G delivery requires much more than
the rush we saw in recent years when major consulting and
business application companies (such as Accenture, PwC,
KPMG and others) took equity stakes in technology firms
and surrendered their independence. C2G, in our opinion,
is being driven by the acquisition of integration technology
companies by those actually providing the products and
services — banks, insurers, brokers and others.

In the same way that the major name business application
vendors saw an opportunity to broaden their product port-
folio by acquiring application components (and then inte-
grating them with middleware and EAI solutions), so the
C2G leaders are understanding the need to integrate prod-
ucts and business divisions to support all the life stage
needs of a customer.

Financial life stage needs
Before looking at the design context for a C2G integrated
banking system, let us first look at the financial life stage
needs of a typical financial products consumer. This has
been simplified for the purposes of this analysis but, as can
be seen from Figures 3.1a-b, there are many steps with
quite different implications.

By analyzing the life stage needs of consumers, the banks,
insurers, brokers and financial service companies have dis-
covered that they can understand the breadth of the true
integration needs of their business when they look at the
problem from a customer’s perspective. It is this which
should drive the information, IT infrastructure and applica-
tion component requirements needed within and across
organizations — and their integration.

Set against an increasingly mobile set of consumers, one
can see (in Figure 3.2) how various product providers need
to acquire or form collaborative integrated relationships if
they are to provide global financial services set in a ‘whole
life’ context.

Client-driven C2G integration
through Web Services, XML and P2P
In our experience the companies that will succeed in the
C2G market will be those that really appreciate how to
realize the capabilities of their products and services when
these are harnessed around all the future life stage needs
of their clients. This requires integration and collaboration
between businesses on a larger scale than we have today.

By looking outside the financial sector, companies can see
how such conceptual initiatives have been successful else-
where. The manufacturing and automotive industries are
showcase examples of where supply chain management
concepts have been extended to create cross company col-
laborations between both major and minor companies. All
are harnessed through a business driven need to optimize
the flow of components and information to manufacture
the products as customers need them.

This, we believe, is the true meaning of integration. And, in
that context, we can set out what the financial sector must
do to satisfy life time integration:

provide business components which offer the
means of capturing information from con-
sumers in order to supply them with a breadth
of financial products
understand a consumer’s life stages, as well as
profiling of current and likely future financial
product needs
offer a broad range of service and delivery
channels to enable each consumer to interact
with one or more providers without regard for
location and the communication medium
choose technology that is able to integrate
provider companies on a global basis
adopt global standard message formats that
enable a wide range of providers to bid, col-
laborate and provide information, products
and services to consumers
establish an industry body that is sufficiently
funded by commercial banks, assurors, life
companies and brokers to create a cross sector
L.I.F.E.T.I.M.E. message standard (probably
based on XML) and which promotes member
participation (akin to a personal S.W.I.F.T.)
take small but progressive steps to success
rather than one huge effort to try and map all
life stage message exchanges

16

introduce cross industry initiatives led by com-
mercial companies to bridge the divide
between existing standard message formats
used by sector companies; this should be an
interim step while a L.I.F.E.T.I.M.E. format is
created (for example L.I.F.E.T.I.M.E. to
S.W.I.F.T., to FIX, to ORIGA, to OFX)

entice technology integration providers —
with broad enough offerings to justify acquisi-
tion by provider companies (for example, See-
Beyond, Sungard, IBM, webMethods, etc.)
identify a leader who can bring together all
the constituent standard bodies and industry
initiatives and create a groundswell of activity
that bridges both business providers and con-
sumers
implement an application of peer to peer (P2P)
technology that focuses on what (we believe)
should really be termed Person-to-Provider.

The relevance of middleware
for integrating a network centric
banking strategy
What I have sought to present in this analysis is a view of a
globally integrated financial solution that will meet the
needs of consumers (focusing on the individual as an exam-
ple). Equally, application of the same concepts can be
applied to commercial and corporate finance. What is

required in all cases is the drive to change your organiza-
tion and evolve it to the new cradle to grave (C2G) picture.

In this context, middleware and integration solutions are
critically important to the financial sector. But, in our expe-
rience, this is only true when they are applied 100% to
meet the needs of the business strategy — in this analysis

the I have used the ‘lifetime financial business strategy’ as
the example. In creating an overall integrated solution,
middleware and associated products are more than tech-
nology delivery tools. They enable vision and free thinking.
In a sense it is middleware which puts wind into the sails of
belief, so that a strategic vision can be created and deliv-
ered.

Management conclusion
What Mr. Allcock presents here is a view of a globally inte-
grated financial solution that meets the needs of con-
sumers — by concentrating on the individual, as his
example. The same principles can be applied just as well to
commercial and corporate finance.

In his view, what is required in all cases is a desire to
change, to drive financial organizations forward. In his
vision a new order will evolve — one that will be described
in the final part of this series as he brings together all the
pieces in order to describe how you should go about
obtaining success.

Integration banking — using middleware to integrate a network-centric banking strategy

17

PRE-
BIRTH

BIRTH NEWBORN INFANT ELEMENT
ARY

TEENAGE FIRST JOB

CONSUMER

CAREER
DEV

CAREER
ESTABLIS

HED

CAREER
MATURITY

PRE-
RETIRE...

PRE-
CONSUMER

... RETIRE NEXT GEN

POST
CONSUMER

Asset re-allocation

Asset allocation Asset creation

RETAIL BANK

BUILDING SOCIETY

LIFE INSURER

PRIVATE
BANK

RELATIONSHIP BANK

PENSION
MANAGER

INVESTMENT
MANAGER

STOCKBROKER

CREDIT
PROVIDER

VENTURE
CAPITALIST

INCOME
DRAWDOWN

MANAGER

Figure 3.2: Integrating financial relationships across ‘life’

Addressing pitfalls with EJB

development and deployment

across different J2EE applica-

tion servers

Dan Rolnick
Senior Consultant
Cacheon

Management introduction
J2EE is the great technological hope for those who do not wish to follow the Microsoft
.NET path. Application servers are all the rage. Over 50 different products are available.
Competition is intense. The common assumption is that, if you deploy Enterprise Java
Beans (EJBs) built using two or more J2EE application servers and development tools,
they will work happily together.

Sadly, this is not necessarily the case. Indeed, J2EE-based application servers have — as
most pessimists anticipated — specific incompatibilities. What you build for deploy-
ment on (say) iPlanet will not necessarily run on WebSphere or WebLogic or Oracle
9iAS ... and vice versa.

In this analysis, Dan Rolnick explores the dependencies that arise when developing an
EJB for deployment on a J2EE compliant application server. He examines how vendor-
specific implementations of low level services and entity bean persistence, as well as
proprietary deployment descriptors, can irrevocably tie an EJB to a particular vendor’s
application server. He then looks at possible solutions.

18

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2001 Spectrum Reports Limited

The practical, business context
To remain competitive, enterprises must balance business
and technology challenges. A primary challenge facing
many enterprises today is the ability to develop rapidly and
then deploy new business applications and services in
response to changing customer needs.

The need for this — and the fact that not all Enterprise Java
Beans are created equal — was brought home to us on a
implementation project at a leading international financial
institution. This institution wanted to create a new business
service in response to its customer demands.

Previously, its customers had to log into:

one account application to access a current
account balance and bill payment information
a separate brokerage application, in order to
access portfolio balance and loan availability
information.

But these same customers wanted to log into one applica-
tion that would provide them with a consolidated view of
both their bank and brokerage account information. To
satisfy this, the financial institution needed to do some-
thing if it was to avoid alienating, and losing, customers.

In response, the financial institution accepted that it
needed to create a new business service. For operational
and financial, as well as common sense, reasons the pre-
ferred approach was to combine functionality that was
already offered in the existing bank and brokerage applica-
tions in order to deliver a consolidated view of account
information.

What the financial institution knew was that, by leveraging
existing application components (to deliver the new service
to its customers), it would obtain a competitive advantage
(however briefly) because it would:

decrease the time to market for the new busi-
ness service
increase revenue generation as a result of the
new business service
improve customer satisfaction and retention.

However desirable these were, as a set of justifications, the
financial institution also knew that it faced a daunting
prospect — the integration of components that had been
built on two (or more) application servers and/or legacy
production environments. Furthermore, these applications
had been developed by different vendors and different
teams at different times using different technologies. Inte-

gration, especially of the application server elements (on
which I will focus) was not going to be easy.

Setting the EJB/J2EE stage
In the financial institution, the ‘opportunity’ involved:

a banking application deployed on an Oracle
9iAS application server
a brokerage application deployed on a BEA
WebLogic application server.

As will be discussed, the problems arose because the appli-
cations and services ran on heterogeneous platforms.
Despite the fact that both application servers were hosting
J2EE-compliant EJBs, they were not easily integrated.

The reality is that EJBs are developed for deployment on a
specific application server. These require modifications
before they can be deployed on a different vendor’s appli-
cation server. This is because some of the code developed
— the tools used for creating EJBs — establish a depen-
dency on a specific vendor’s application server.

Because of these dependencies, moving an EJB between
different J2EE compliant application servers produces
deployment problems. For example, deployment issues
arise when trying to move an EJB developed for (say) a BEA
WebLogic application server to an IBM WebSphere applica-
tion server.

Additionally, EJB to EJB communication across J2EE compli-
ant application servers can produce run time problems. For
example, run time issues arise when an EJB deployed on
(say) a WebLogic application server attempts to communi-
cate with an EJB deployed on (say) a WebSphere applica-
tion server.

Dependency details
Most of the functionality available through the Enterprise
JavaBeans Application Programming Interface (API) is
included in the javax.ejb package. This package primarily
consists of interfaces. These interfaces are implemented by
each application server vendor, each one of which is free to
interpret and implement them as they think best.

Inevitably, differences occur. The EJB interfaces define the
services provided by a particular container. They also define
the client interface to an EJB.

For example, the container is responsible for managing the
interactions between an EJB and the application server. Yet

Addressing pitfalls with EJB development and deployment

19

each application server vendor implements the services
provided by their own application server container. These
include services such as:

security
transactions
multi-threading
distributed programming
connection resource pooling.

The worthy objective of J2EE and EJBs is to free developers
from having to be concerned about such low level services.
If they do not have to be, they can focus instead on devel-
oping the EJBs which represent specific business logic.
These EJBs can then make use of the functionality provided
(to the EJBs) by the low level services.

The problem is not with the principles. An application
developer can utilize the services provided by an applica-
tion server container. The challenge lies in how these ser-
vices are implemented by each vendor.

Difficulties arise because EJBs developed for deployment on
one application server have dependencies on that applica-
tion server’s implementation of these low level services.
Yet, in order to take advantage of the benefits provided by
such services (not least, protection from the low level con-
siderations), developers must implement EJBs in ways that
make use of the services as implemented by that vendor.

The result is that EJBs are created which depend on the
underlying vendor’s implementation of the key low level
services. Consequently, if you attempt to move EJBs
between different J2EE compliant application servers — or
even try to have them work together while running on dif-
ferent applications servers — incompatibility problems
occur.

Other problems:
client interfaces
Similarly, other problems occur with client interfaces to an
EJB. The EJB architecture allows clients to invoke an EJB
over a network via the home interface and the remote
interface for the EJB. The home and remote objects handle
the communication between a remote client and an EJB
deployed in an application server container.

Although many container implementations handle com-
munication using Java RMI, the EJB specification does not
mandate which distributed object protocol should be used
for communication between a client and the container
managing the remote EJB. As a result, vendors have lati-

tude in how they choose to implement the communication
between a client and an application server container.

Furthermore, clients use the Java Naming and Directory
Interface (JNDI) to locate and access a remote reference of
an EJB on an application server. This requires the instantia-
tion of an initial context object, which provides the starting
point for the JNDI lookup. The initial context factory is part
of the JNDI API and requires a developer to set properties
that are specific to that vendor’s implementation of JNDI.
The type of initial context object which is instantiated
varies, based on each application server vendor.

It turns out that each vendor has unique JNDI properties
that must be populated. As a result, the initial context
object used for locating an EJB deployed on one application
server cannot necessarily be used for locating that EJB
when deployed on an application server developed by a dif-
ferent vendor. Therefore, an EJB cannot call another EJB
deployed on an application server developed by a different
vendor without encountering run time errors.

Persistence issues and entity beans
Additionally, the tools available for configuring the persis-
tence properties for entity beans which use container-man-
aged persistence are almost invariably proprietary. They are
included as part of the application server software.

These tools matter. They are used to:

generate tables from entity bean objects
map container-managed entity bean fields
defined in deployment descriptors to database
fields
provide support for complex object to rela-
tional mapping, such as a one-to-many rela-
tionship.

These tools, however, can be used to edit entity bean
‘finder’ method expressions. Yet ‘finder’ methods are
defined in the home interface for an EJB. Again, each appli-
cation server vendor has a proprietary strategy for defining
how the ‘finder’ methods are implemented.

With container-managed persistence, each finder method
defined in the home interface must be explained to the
container managing the entity bean. This explanation is
provided to the container during deployment of the entity
bean using vendor-specific deployment tools and syntax.

Being proprietary by nature, these tools bind the definition
of an entity bean’s persistence to the application server

20

software provided by that particular vendor — resulting in
the development of entity beans that have dependencies
on the tools that have been provided by the application
server vendor. As a result, entity beans written to run on a
specific application server cannot be moved to other appli-
cation servers developed by different vendors without
encountering deployment errors.

Packaging into JAR files
In addition, each EJB is packaged into a JAR file for deploy-
ment onto an application server. This JAR file includes the
class files and the deployment descriptor for the bean. The
deployment descriptor:

defines the deployment properties for an
EJB
directs the deployment tool (on the chosen
application server) as to how to deploy the
EJB within the container.

The Enterprise Java Beans specification version 1.1 requires
that the deployment descriptor be saved as an XML file
named ejb-jar.xml in the META-INF directory. Each applica-
tion server includes a container that manages the interac-
tions between the bean and the server. Deployment tools
use the ejb-jar.xml file to add a bean to the container.

Most application server vendors require one or more pro-
prietary deployment descriptor files for deployment of
beans. While ejb-jar.xml defines common EJB properties,
the vendor specific deployment descriptors define custom
properties for deploying a bean within a specific applica-
tion server container. The container then uses both the
required and the proprietary deployment descriptors to
apply primary services to the EJB at runtime.

Similarly, a deployment JAR file for an EJB includes both the
vendor’s proprietary deployment descriptors and the
required deployment descriptor. The proprietary deploy-
ment descriptors are specific to the application server ven-
dor and are therefore incompatible with an application
server developed by another vendor. Once again, deploy-
ment errors will be encountered when attempting to move
an EJB across J2EE compliant application servers.

Possible resolutions
From all the above it should be more than obvious that ‘all
EJBs do not necessarily talk to all other EJBs’ — unless they
were built on and run on the same application server,
which was not the case at the financial institution. The
question is: “Can such difficulties be solved?”

An EJB can require manual intervention — the rewriting of
code in order to accommodate the service implementation
of another application server vendor prior to moving the
EJB. To promote the development of EJBs that can be more
easily modified to accommodate another vendor’s imple-
mentation of low-level services, a developer should identify
service implementations that are specific to a particular
vendor. These services might then be isolated into service
factories in order to create a layer of abstraction between:

the application framework
the services provided by the application server
vendor.

Similarly, an EJB that is dependent on a specific vendor’s
implementation of persistence for container-managed
entity beans may require modification prior to being
deployed on an application server developed by a different
vendor. Although entity beans can be modified using the
persistence tools provided by the new application server
vendor, this often results in EJBs that are still dependent on
a specific vendor’s implementation of persistence. To over-
come this, a developer may consider using bean-managed
persistence rather than container-managed persistence to
handle entity bean persistence.

Finally, an EJB that includes deployment descriptors that
are proprietary to a specific vendor’s application server can-
not be deployed on another vendor’s application server
without modifications. One solution here is to develop
deployment descriptors that are required for the new appli-
cation server. But this solution also requires that a new
deployment JAR file be created for the EJB that includes the
new deployment descriptors.

Another approach
However, these are not the only approaches. For example,
there are products which complement application server
tools and processes in order to automate the conversion of
deployment descriptors. [One such tool is the Cacheon one
(Figure 4.1), which was used at the financial institution.]

This tool is able to read proprietary deployment descriptor
files for several vendors and convert the contents of the
files to the deployment descriptor representation appropri-
ate to the new application server. Figure 4.2 shows the
deployment of a JAR file — BankAccounts.jar — for a ses-
sion bean.

In this, the BankAccounts.jar file includes:

the META-INF directory

Addressing pitfalls with EJB development and deployment

21

the Java files that comprise the EJB.

The META-INF directory includes:

ejb-jar.xml, which is required for EJB deploy-
ment
the proprietary deployment descriptor
required by — in this case — the WebLogic
application server (weblogic-ejb-jar.xml).

Assume that the session bean is currently deployed on a
JBoss application server. This session bean could be moved
from JBoss to WebLogic, using software to automate the
conversion of deployment descriptor information from
jboss.xml to the format required by weblogic-ejb-jar.xml.
Furthermore, this session bean could later be moved from
WebLogic to Oracle 9iAS, using the conversion software to
automate the conversion of deployment descriptor infor-
mation to the representation required by orion-ejb-jar.xml.

For all this to work, a developer must know about the
issues which must be addressed if vendor specific imple-
mentations of context factories are used to facilitate com-
munication between EJBs across application servers. Ideally,
any such solution must include context factory implemen-
tations for multiple application servers.

In order to facilitate communication between EJBs on dis-
parate application servers, context factories for one appli-
cation server can be deployed onto another application
server. This enables EJBs to communicate across application
servers while eliminating problems that arise from vendor
specific implementations of context factories.

22

BankAccounts.java

BankAccountsBean.java

BankAccountsHome.java

META-INF

Bank Accounts.jar

ejb-jar.xml

weblogic-ejb-jar.xml

XML

XML

Figure 4.2: Deployment of a JAR file

The Cacheon BSC is built upon a dynamic component
architecture which acts as a collaborative environment for
discovering, assembling, deploying and maintaining busi-
ness services at runtime. The main tools that comprise the
Cacheon BSC include the following:

the Business Services Engine (the ‘Engine’)
the Enterprise Warehouse (the ‘Warehouse’)
the Enterprise Warehouse Console (the
‘Warehouse Console’)
the Business Services Console (the
‘Console’).

The BSC Engine, an extension of the Java Virtual
Machine, supports a local warehouse and the loading of
business services into that local warehouse. Additionally,
it supports the loading of modules that facilitate commu-
nication across Engines using ‘Voyager’. Voyager provides
Object Request Broker functionality and facilitates com-
munication between warehouses and multiple applica-
tion servers (including JBOSS, IBM’s WebSphere, BEA’s
WebLogic, Oracle’s 9iAS, with others being added).

A module is a dynamically loaded class that augments the
capabilities of an Engine on a particular machine. This
enables an Engine either to acquire essential capabilities
or to discard unneeded ones, as requirements evolve.

The result is a modular environment that provides a
secure way of augmenting the run time functionality of
the Engine. The modular nature of the Engine enables
functionality to be added, including support for a range
of networking technologies, protocols and standards.

Users of the Cacheon BSC can publish business services to
the Warehouse. Business services that have been updated
in the Warehouse can be propagated to users, using ‘pull’
methods. With the pull method, a user can refresh a busi-
ness service, or a set of business services, to the latest ver-
sion. When retrieving a business service, a user selects the
version of the business service he or she wants to retrieve.

The real attraction of the Cacheon BSC, in a J2EE/EJB
environment, is that EJBs that were built to run on differ-
ent applications servers can be linked together — which is
not always possible. As the attraction of EJBs is supposed
to be that they are building blocks, the BSC adds an oth-
erwise missing piece to the J2EE equation.

Figure 4.1:
The Cacheon Business Services Center (BSC)

Addressing pitfalls with EJB development and deployment

More complications, and solutions
However, a more complicated issue will arise when an EJB
has already communicated with another EJB that has then
been moved to an application server developed by a differ-
ent vendor. This scenario is depicted in Figure 4.3.

Step 1 in Figure 4.3 illustrates the cross application server
communication occurring between:

EJB1, an EJB deployed on Application Server A
EJB2, an EJB deployed on Application Server B.

If EJB1 is moved from Application Server A to Application
Server C, as indicated by Step 2, the communication
between EJB1 and EJB2 will no longer work. This is because
the context factory for locating EJB1 is implemented for
Application Server A and not Application Server C, where
EJB1 has been moved.

In this scenario, a developer would need to utilize a solu-
tion which deploys the context factory implementation for
Application Server C on Application Server B. This would
enable Application Server B to locate EJB1.

Additionally, a developer could deploy the context factory
implementation for Application Server B on Application
Server C, thus enabling Application Server C to locate EJB2.
Furthermore, using some form of automation software,
both EJB1 and EJB2 can be recalled as services and modi-
fied in order to facilitate two way communication across
application servers.

Management conclusion
To compete effectively, enterprises must respond quickly to
changing customer, competitive and market demands. Fur-
ther, they must be adept at functioning within a diverse
and complex computing environment. This requires that
existing enterprise resources be leveraged regardless of
how these resources are developed and where these
resources are deployed.

Unfortunately, despite the hopes for application servers,
EJBs and J2EE, incompatibilities do exist between different
application server and J2EE implementations. While not
major, these issues are not simple to resolve — being
located as they are in the implementation of low level ser-
vices. Nevertheless, the result is a headache for enterprises
trying to make maximum use of J2EE and EJBs.

Although there is a push to develop standards between the
different application server vendors, the desire for compet-
itive advantage inevitably takes precedence over the accep-
tance and introduction of standards. This, coupled with the
fact that the Java standard is itself still evolving, makes the
development of standards between application server ven-
dors even more unlikely.

That is, however, not the whole story. As Dan Rolnick has
described, alternate solutions (like the one from Cacheon)
do exist and work. They do this by providing ‘reference
points’ for EJBs. With these, different implementations of
EJBs are able to work together — which was the original
objective after all.

23

? EJB 1EJB 2

EJB 1

Step 1: Communication
between EJB1 and EJB2

Application Server A

Step 2: EJB1 migrated to
Application Server C

Application Server CApplication Server B

Step 3: How can
EJB2 find EJB1?

Figure 4.3: Communicating EJBs

Application brokers or

application servers: a

21st Century dilemma

Charles Brett
President, C3B Consulting Ltd. and President,
International Advisory Board, MIDDLEWARESPECTRA

Management introduction
In today’s software market place there are two broad categories of product which go
under similar names but are, in practical implementation terms, very different. Both can
deliver quite similar results, albeit via different paths. These categories are:

application servers (iPlanet, WebSphere, WebLogic, 9iAS, etc.)
application brokers (MQSeries Integrator, e-Biz Integrator, e*Gate, etc.)

Customers are constantly being invited to choose between these. There is, however, a
lack of comprehension about how these are, at the same time, so different and so
similar.

24

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2001 Spectrum Reports Limited

Application servers
In general terms an application server is a run time engine
on which applications can be run. In this context, applica-
tion servers can vary from the simple to the sophisticated.
Arguably, an operating system, or even a database on an
operating system, is an application server — you can run
applications on such a server ... Yet application servers, in
their more complex guises, are designed to be scalable,
secure and transaction-capable (Figure 5.1 shows a list of
‘typical’ functions).

In today’s market terms, an application server tends to be a
specific run time engine which has a variety of technologies
associated with it. For example, IBM, BEA and Sun have all
built their application servers around Java. Java considera-
tions (constraints) permeate their whole approach to appli-
cation servers, although not necessarily to the exclusion of
previous technologies (as both WebSphere and WebLogic
demonstrate).

Unfortunately, the name ‘application server’ is not just
associated with running applications. It is also heavily asso-
ciated with application development in general (and Java in
particular). One has only to look at the Oracle 9iAS Web
site or IBM’s WebSphere or Sybase’s Enterprise Application
Server product families to see that each of these comprises
and gathers together multiple different varieties of run
time engines plus multiple varieties of development tool (in
IBM’s case as varied as Visual Age for Java, C++, C, ...
through a host of other tools).

There is, therefore, a common confusion about what an
application server is. This applies as much to the vendor
community as to customers. Neither seem quite sure
whether an application server is about:

application development (where most people-
time is spent)
or application serving (when the ultimate
value is delivered).

Application brokers
Now think about application brokers (which are sometimes
known as integration brokers or even message brokers).
These are also software products and are available from a
myriad of vendors, including:

IBM, with MQSeries Integrator (and even
MQSeries Workflow)
Sybase, with its e-Biz Integrator/Process Server
family
SeeBeyond, with its e*Gate collection
webMethods, with its Integration Platform
TIBCO, with its Integration Server
Sun, with the iPlanet Integration Server
some 30+ other organizations.

Application brokers sit between existing applications and
enable these applications to work together (Figure 5.2). An
application broker ‘brokers’ the linkages between the

Application servers or application brokers: a 21st Century dilemma

25

J2EE support
Java Servlets
Enterprise JavaBeans (EJB)
Java Server Pages (JSP)
Java Database Connectivity (JDBC)
Java Naming and Directory (JNDI)
Java Transactions (JTA)
Java Messaging (JMS)
Java Security
RMI
HTTP
SQLJ support

Web Server to JSP/Servlet
to EJB connectivity

HTTP and HTTPS tunneling
Load balancing
Availability
Connection re-routing
Application failover
Clustering
Session state replication (and failover)
IP multicast
Logging
+ copious and varied development tools

Figure 5.1: Application Server — typical components

source and destination applications, thereby reducing the
potential number of interfaces from n(n-1) — where n is
the number of interfaces — to n*2, a significantly more
manageable number.

As such, application brokers are a mechanism for connect-
ing applications — which explains their utility in EAI (Enter-
prise Application Integration). They reduce ‘application
connection spaghetti’. Furthermore, they can be extended
to include process flow automation and work flow man-
agement, which introduces the capability to manage state
and long running transactions. They are, inherently, asyn-
chronous — in the sense that different application ele-
ments can be loosely coupled together.

Application brokers are, essentially, run time products. The
focus is on the message and process flow, with little human
interaction (until you reach full blooded work flow and its
inclusion of people interactions).

But that is not to suggest that development is unnecessary:
it is, except that development usually takes place externally
to the application broker itself. In MQSeries Integrator, for
example, nodes are built in C++ or Java. Working nodes
are then assembled into flows on a palette which is then
deployed onto the application broker run time engine.

A similar approach is delivered by e*Gate and e-Biz Inte-
grator. In the latter, the rules and formats are created
externally, and loaded into a database for execution.

Application brokers
and servers are the same?
Ah ha, you may say. Does that not mean that application
brokers and application servers accomplish the same only
differently? The answer is ‘Yes’. Both have run times
engines. Both have development ‘environments’.

Indeed, the similarities go even further. You can use an
application server to build what looks like an application
broker. You can use an application broker, especially if
process handling is added, to deliver what is to all intents
and purposes an application server (a system running appli-
cations). Both can be used to provide application integra-
tion — which is what both are being sold to do.

Do the differences matter?
This raises the question of whether the differences —
which are considerable in terms of approach, technical
architecture and style — matter. We argue that the differ-
ences do matter. They probably matter most if you come
from:

an application development background
(when an application server will almost always
look more understandable)
a business process background, when the con-
cept of an application broker will generally
appeal more (working as it does between
existing entities, applications).

26

Q

Q

Q = queue (or file)

Q
Q Q

Q

Q

Q

Application

Application

Application

Application

Application

Application
Broker

(Routing,
transformation

etc.)

Figure 5.2: Application Broker — a typical configuration

If you come from neither background, the only prediction
we will confidently make is that you will be confused — as
you attempt to acquire both development and business
process knowledge before sorting through the many possi-
bilities.

Too many, too much
In one sense, therefore, IBM’s initiative to place both its
application broker and application server families under the
one WebSphere name makes sense — if you know from
where you are starting. If, on the other hand, you are new
to the potential being offered, trying to sort out what you
want and why will be a true challenge.

But perhaps the more meaningful, in architectural terms, is
the approach taken by Sun. It has placed its application
server (the run time) beneath its application broker. The
application server is the engine on which the application
broker function works.

While the Sun implementation is relatively unproven, it
points to a simplification — of description, implementation
and deployment — that we think is both desirable and
clear:

the application server should be exactly that, a
run time engine for applications (which could
include application broking, process flow,
work flow, etc.)

the application broking (or other functions
like process or work flow or whatever) is a
specific implementation of application
function which uses the underlying application
server
development tools, applicable to each func-
tions, are kept separate
transports, the mechanisms which bring
payloads for processing, are also separate.

This would be a much more attractive story for customers.
It would be a more logical story for vendors. It would cer-
tainly simplify decision making. But it is not all. Now add
PFA.

Process Flow Automation
As described above, both application servers and applica-
tion brokers are relevant for integration, if in different
ways. Traditionally, application brokers were associated
with linking business applications inside an enterprise
(intra-business application integration), which was often
true for application servers as well.

With the arrival of the Internet, the need for linking
selected business applications across the Internet (inter-
business application integration or B2B) accelerated.

However, neither application servers nor application bro-
kers are a total answer. They automate specific processes in

Application servers or application brokers: a 21st Century dilemma

27

Q

Q = queue (or file)

Q

Q
Q

Q

Q

Q

Q
Q

Q

Application

Application

Application

Application

Application Brokers

Process Flow
Automation

Figure 5.3: Process Flow Automation with an Application Broker

a relatively fixed manner. Once working, they run as
needed.

In contrast, process flow automation (PFA) enables busi-
nesses to add an additional level of sophistication by which
to direct whole business flows. To comprehend what PFA
can do, think about two typical business processes:

a mortgage company making a house loan
a business making a sale to another business
over the Internet.

In the first, the mortgage house will possess a formally
defined process about how mortgage applications should
be handled, from the customer completing the form
through authorization through actual delivery of money to
either the customer’s account or the seller of the house. In
practice, because of the way that systems have evolved, as
islands of automation, it is likely that several different, and
specialized, applications running on different existing phys-
ical systems will be used:

from the mortgage origination entry applica-
tion
through credit checking (which might involve
external references to third party credit data-
bases)
through a payments system
through to the mortgage house’s own ledger
system.

Using the traditional approach, even for the simplest mort-
gage, there is substantial human interaction — primarily
supervising the application through the various sub-
processes. Automating as much of this as possible has the
potential to be faster and cheaper for the mortgage house
(and customer), as well as require fewer people.

In the e-commerce instance, a business might have a Web
site with an order form. A business customer decides what
to buy (say) 1000 widgets. That order has now to be
processed, and the widgets delivered. But to do this a
sequence of processes — the order and delivery business
process — has to be completed, from:

establishing whether the widgets are in stock
(checking against inventory)
making a credit check (possibly against exter-
nal credit agencies)
arranging for delivery (and notifying the cus-
tomer)
calculating discounts
invoicing, once delivery is made
posting the sales and general ledgers (which
may be held on different systems)
calculating the sales commissions to be
paid.

With the exception of the physical delivery, most of these
processes could be automated. People involvement is not
needed — if the various applications can work together.

28

Application
Server

Process Flow
Automation

Work Flow
Automation

Application
Broker

Common
development

tools

Figure 5.4: PFA+Application Broker+Application Server

What PFA enables is the automation of a predictable
sequence of events, but where different choices of actions
are enabled — which can link two or more applications.
This is instead of those events being triggered by one or
more people.

In business terms, PFA is not the same as work flow
automation (WFA). WFA originated with large paper-based
organizations — like insurance companies and government
— which looked for software to ‘manage’ the paper flows
within their organizations. This frequently included long,
complex processes — for example, the completion of an
insurance claim, from submission right through to final
payment or rejection.

In the terms of the mortgage application or the sales of
1000 widgets examples above, PFA can manage the
process to process steps. Even more, it can manage (if suf-
ficient attention is paid when it is set up) the automated
catching and correction of errors or discrepancies. By
reducing the involvement of people (where they are not
really wanted or needed) processing can be further auto-
mated, and more accurately.

While PFA offers more than an application broker, it does
not aspire to deliver the complexity (the human involve-
ment) of WFA. The attraction of PFA is that it is:

simpler
restricted to processes that can be automated
without human involvement.

PFA is, therefore, WFA without people and applied to
processes or sub-processes which are already described in
software. This is significantly easier to deliver than WFA.
PFA bridges between processes that already exist in appli-
cations that are already running in organizations (or
between organizations) — by applying a layer of logic
which can direct and feed the applications with which it
(PFA) has connections (Figure 5.3).

Layering a common sense solution
In some ways it (PFA) sits atop application servers and bro-
kers and below the people-rich involvement of WFA. It
does this by automating the co-ordination of activities
between processes that are already ‘captured’ in existing or
new applications and brokers without surfacing interac-
tions to people (and all their associated complications).

In practical terms, think about the newly expanded Web-
Sphere family or Sybase’s portfolio — of Enterprise Appli-
cation Server, e-Biz Integrator, Process Server and Portal
Server. Envision a world where application brokers and PFA
function are built using application development tools
which produce function that can run on application
servers. Go one stage further and appreciate the increased
attraction of using those same development tools, which
can be used for defining process and work flows. This
would be coherent.

Most vendors’ product stories would be more attractive if
their application servers borrowed from the production,
deployment and resiliency capabilities that application bro-
kers possess. Similarly, most application brokers would
benefit from being associated with modern run times, like
those found in application servers and with commonly used
development tools. And PFA would make even greater
sense sitting above them both (Figure 5.4).

Management conclusion
This may be to ask too much. But, if vendors are bold
enough, they might remove the fruitless ‘angels on the
head of a pin’ debates about whether to buy an application
server or application broker solution — when both accom-
plish the same broad objectives, only differently.

This would be a step forwards. Middleware is already com-
plicated enough without having to wade through largely
meaningless differences — that are mostly in the eye of the
developer (vendor) rather than the end user.

Application servers or application brokers: a 21st Century dilemma

29

The state of business rules

Martin West
Vice President of Research and Development
SpiritSoft

Management introduction
In this analysis, Martin West — the Vice President of Research and Development at
SpiritSoft — reviews the evolution of business rules in the context of event driven sys-
tems. He introduces and positions reactive rules in a number of business areas, as
expressed through the ‘Event-Condition-Action’ (ECA) paradigm.

In addition, Mr. West describes:

the need for rules, by segmenting the problem domain into deductive
rule processing and reactive rule processing
the concepts that underpin ‘ECA’ rules — and how these are instrumental
in solving many of the business critical problems that arise in today’s
highly connected environment.

30

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2001 Spectrum Reports Limited

Background
Up until the late 1980s, applications were generally proce-
dural in nature. Business processes had to conform to the
way the application that supported these processes was
written.

A number of developments occurred towards the end of
the 1980s that began to change the way applications could
be written and operated:

Apple, IBM and Microsoft led the development
of ‘windows-based’ systems; applications
could now be written to include event driven
user interfaces
with the introduction of IBM’s MQSeries, the
development of message orientated middle-
ware (MOM) came of age (it had existed
before, but not really in self-standing product
form)
the introduction of triggering functions within
database systems enabled applications to be
called when data changed or was added to the
database
object orientated programming began to
emerge from its evangelistic stage.

However, none of these fundamentally altered the way
that applications were written. The old, familiar procedural
techniques were, and are, still fully in operation. Business
rules were, and are, still deeply encoded in traditional appli-
cations.

As such, business rules were not visible to business people.
To all intents and purposes, this meant that only program-
mers could change applications. But such changes were
often costly as well as being prone to error.

Realization
By the 1980s there were those in the IT industry who rec-
ognized that these recurring problems were unacceptable
— and that alternative solutions were required. One exam-
ple of an effort to break free from traditional bounds was
IBM’s Insurance Application Architecture (IAA). This
defined the concepts of business rules and business rule
processing.

Since then, along with other developments, business rule
technology has been following a typical ‘technology adop-
tion curve’. Today, IT professionals:

are seeing the emergence of business rules
technology from the evangelical state

can reasonably expect it to become ‘matter of
fact’ in the next five years, in much the same
way that object technology has been accepted
over the past five years.

Standards are, as so often, playing a critical role in its wider
acceptance. JMS (Java Messaging System) and JAXM, in
particular, offer definitions for the delivery of synchronous
and asynchronous events. Equally, business related XML
standards — such as ebXML and finXML — provide the
semantics and choreography of industry specific business
events and scenarios. Finally, Business Rules Standards are
being defined by:

RuleML, which is part of the W3C Semantic
Web Standards activities
the Java Rule Engine activity, sponsored by
Sun.

In other words, rules have moved beyond the conceptual-
ization stage. They are moving towards production.

Business rules
A business rule is a statement that defines or constrains
some aspect of a business. It asserts structure or control
which influences the behavior of the business. Traditionally,
the dominant force in rules technology has involved
‘deductive solutions’. These are rules that are inferred with-
out the need to be told how to do this.

But this is not the only type of rule. As this analysis will
describe, there is an alternative type of rule solution —
known as a ‘reactive’ rule.

Today, many products support business rules. More often
than not, however, products are specific to an industry.

The reason for this is that it has proven difficult to build a
‘one size fits all’ business rules system, not least because
the terminology (and audiences) vary so differently
between industries. For instance, an application that
enables actuaries to define business rules for life and pen-
sion products has surprisingly little in common with that
appropriate for the administration of a property and casu-
alty system — and that is within the insurance industry.
Between industry types, say, insurance and manufacturing
or banking and pharmaceuticals, the differences are even
greater.

Why do you need rules?
Business rules are, already, pervasive. They cannot be

The state of business rules

31

avoided. Whether it is calculating the value of your life
insurance premium or the cost of a mobile telephone call, it
is a business rule which does the work. In this sense, busi-
ness rules are the synthesis of one or more processes (‘find
out the number of minutes used, find out the cost per
minute, multiply the two together and obtain an amount
to be invoiced ...’).

In the past, applications too often became unwieldy and
inflexible as they grew or expanded. In so doing they began
to fail to fulfill business needs. In addition, such concentra-
tion of logic and process created maintenance nightmares.
These became ever worse as applications were modified in
an attempt to address new business requirements.

The consequence was that organizations realized that they
could not avoid the fundamental problem, which was that
business requirements change faster than applications can
either be created and/or modified. The attraction of rules is
that they offer a way to:

encapsulate business semantics
promote them to the surface in the same way
that databases enable us to separate data from
applications.

We need rules so that we can withdraw the business
semantics that currently are embedded in applications. In
so doing we can provide improved support for the decision
making processes that underpin the ways in which organi-
zations operate. This is an essential requirement in today’s
operating environment where businesses need to remain
flexible, whilst at the same time driving their IT infrastruc-
ture forward towards supporting complex real time deci-
sion making.

Having said all of that, business rules have not yet taken off
— principally because of the lack of agreement on the
standards and the technology that exists to implement the
systems. However, this is changing as messaging, business
process and business rule standards win ever greater
acceptance and approval.

Different rules for different problems
Because rules enable us to capture business semantics as
well as to support on-the-fly decision making, they clearly
possess the potential to become part of IT’s total offering.
But not all rules, however, are created equal.

It is here I depart slightly from Barbara von Halle’s view that
all rules are about data, which she expresses in an excellent
series of articles on Business Rule Systems. This was pub-

lished recently in the DM Review (www.dmreview.com) . In
my view, you should separate:

rules about data
from rules about business
events.

Data-centric rules can be applied to large data sources to
infer patterns and to answer questions. We might apply
rules to an historical database to look for the reasons why
something happened.

For instance, these might infer a relationship between two
or more claims, and associate their risk, which then has an
effect on the premium calculation for an insurance policy.
These sorts of analytical problems are best solved using
Rete-based deductive systems and data mining applica-
tions.

In contrast, business events form an essential part — the
life blood — of any enterprise. Events codify the way in
which a system responds, whether it is in procurement,
insurance, finance, supply chain management or any one
of the many forms of electronic data interchange that exist
today.

For example, when an insurance product is sold, an insur-
ance product administration system might generate a
‘product sold event’ which would be sent to the sales com-
pensation system. The compensation system would process
this event — according to its set of business rules; these
rules might even generate additional events — that would
eventually reach the payroll system (Figure 6.1).

Why business rules are
different from rules about data
It is not sufficient to be able to expose the business rules
and enable their rapid modification. A business rule system
needs to support change management and version control.
In this sense it differs from rules about data. Let me illus-
trate why.

Over time different versions of a rule will exist. A rule may
have to be changed because the business itself has
changed, or because the rule does not correctly model the
business (a bug fix).

A further complication is that a rule may be part of a con-
tractual agreement, say an insurance policy for instance.
This may have an operational life of tens of years. Take the
example of a sale person paid by the amount and longevity
of a policy. He or she sells a policy, and the reward is a one-

32

off payment based on the assumption that the policy-
holder continues to pay for ten years or more.

But what happens if the policy is canceled after six years?
The sales person will have been overpaid. His or her com-
pensation needs to be adjusted in terms of the compensa-
tion scheme in operation six years before. [Such long
intervals are not that uncommon: just think of products
with three or five year guarantees.]

So, in addition to the development version control and
change management of business rules, there is an opera-
tional dimension as well. A business event will have a busi-
ness date associated with it. When a rule is executed the
business rule system must locate the appropriate version of
the rule for that business date. Business rule systems today
are immature in this respect.

ECA and rules
An event-centric rule is best expressed as a forward chain-
ing set of Events, Conditions and Actions:

an event can be a message from a messaging
service (say, JMS) (for example about a product
sold or a ‘request for quotation’ message), a
property change (a button press to enter a
communication received) or a state transition
(an insurance policy is about expire)
conditions are predicates that are used to
decide what actions should be executed; they
are applied to the event (or events) that pre-
cede it and return true or false answers (‘the
beneficiary’s age is within acceptable limits’)

actions represent what should be done; typi-
cally actions are built-in functions (sending a
sales compensation update message or making
a request for external communication to use a
print service) or any method accessible to the
rule.

The benefit of a rule-based approach is that it develops and
codifies the semantics of all business transactions that
describe ‘how things are done’. This reduces the cost of
integration, training and operating a business over time.

At their simplest, ECA rules decouple application interfaces
from business logic. They enable each to be optimized and,
most critically, changed independently.

The ECA framework
(multiple ECAs)
By looking at a simple conceptual model for describing re-
active rules — in the form of Event, Condition and Action
— it is possible to introduce ECA rules and an open ECA
Framework. The advantage of this is that it forms the basis
for collaboration and co-operation between:

different ECA rule implementations
re-active rule and deductive rule implementa-
tions.

In essence the framework enables the definition of busi-
ness events — and the conditions and related actions that
should be performed — to be expressed in an interchange-
able format based on an XML schema. In the case of a sales
compensation system:

The state of business rules

33

Product
Admin.

Database Database

Compen-
sation

Payroll

Figure 6.1: Compensation and Payroll rules

the sale of a product would be a business
event
it would produce a result which sent another
(new) business event to the payroll system.

A Java-centric ECA Framework implementation is a set of
interacting components that conform to the ECA Frame-
work interface definitions, allowing multiple user interfaces
to be constructed that fit the needs of the user community.
The framework supports forward chaining ECA rules and,
by so doing, produces implementations which are able to
take a generative approach that, in a Java implementation,
enables the rules to be generated (on-the-fly) into Java
code. A C# based solution could conceivably do the same
while still conforming to the ECA Framework interface def-
initions.

Components, embedded or stand-alone, are able to sub-
scribe to rule changes delivered from a JMS message bus,
and load them dynamically. For example, in the SpiritIntel-
lect implementation with which I have been involved, a
unique version-based class loader is used — without the
need to stop the running rule.

In this way the framework is unique. It enables Java Virtual
Machines to be used as rule engines, by exploiting a JMS
compliant messaging bus for rule distribution as well as
event delivery.

In this implementation, the ECA rules are geared to the
problems inherent in event-based systems, the footprint is
small and, because the rules are implemented as Java code,
the rules can be embedded seamlessly into Java applica-
tions. This means that rules can be run on devices as small
as PDAs — at least those that support Java Platform 2
Micro Edition (J2ME) with a Connected Device Configura-
tion (CDC) — as well as on high end servers.

Rules can, therefore, be embedded into anything from a
simple Java bean to an EJB session or entity bean. This
makes ECA rules deployable in a wide range of environ-
ments and applications. It provides event-based flexibility
wherever it is needed.

In practice
The sales person compensation system I referred to earlier
could easily be implemented using an ECA framework.
There would be a monitor to process incoming events that
execute an appropriate business rule depending on the
kind of the incoming event (Figure 6.2).

For example, the business could react to a new competitive
product by introducing a sales promotion which offers the
sales force an extra incentive to sell a particular product. To
deliver this (without traditional coding), you would create a
‘new business rule’ which would in turn invoke a promo-

34

Product
Admin.

Product
Database

Payroll
Queue

Compensation
Queue

Compens-
ation

Database

Compen-
sation

Payroll

Promotion
Rule

New
Business
Monitor

Figure 6.2: Compensation with ECA rules

tion rule whenever the product sold was the one being
promoted.

This is an example of a short lifecycle rule. It could be imple-
mented and deployed in a matter of days. It might exist
only for a few weeks or months. Equally important, it could
be discontinued — by removing the rule, with equivalent
ease and speed.

At the opposite end of the spectrum, a life insurance pre-
mium payment event might trigger one or more rules that
allocate portions of the premium to investment funds. The
deployment and validation of this rule would be longer and
more formal — because of the contractual nature of the
business event.

In this instance, the rules might need to be operational for
several years. Indeed, the rules might be upgraded over the
lifetime of the investment agreement because of correc-
tions, new requirements or regulatory changes. Whether
subsequent payment events operate with the new version
depends on the nature of the changes to the rule. One
could even envision circumstances where meta-rules dic-
tate which rules are applied to a particular business event
and determine which rules should be used to police other
rules.

Management conclusion
The technologies and standards for the successful develop-
ment of business rules are just beginning to mature. The
infrastructure to provide asynchronous messaging is well
established and the JMS standard will increase the general
acceptance of message oriented middleware.

XML standards — like ebXML and finXML — will enable
message payloads to carry information against which ECA
rules can be easily applied. Business rule standards will
enable the development of componentized business rules,
ones which can be assembled, shared and adapted by the
wider community. Event driven execution, management
and monitoring of business rules can be achieved in a truly
flexible way to ensure that systems remain adaptive to busi-
ness needs at all times.

As Mr. West has illustrated, ECA rules are a technology
which enables the management and execution of business
events. By providing an environment for the specification
of complex rules which allow multiple events to participate
in a business transaction, ECA rules can be constructed and
deployed anywhere in a network.

Mr. West has also shown that:

flexibility of deployment is an important
requirement with the ability to run rules as
stand-alone rule agents or as embedded rules
within applications
an open ECA Framework exists — as a concep-
tual model that has the potential to allow
interoperability of rule based solutions that
includes both event and data driven rule tech-
nology
this obviates the need for a separate rule
engine — thereby reducing the footprint of
rules and ensuring an easier integration
between the rules and their surrounding envi-
ronment; it enables the choreography of exist-
ing components to be easily achieved.

The state of business rules

35

A reality check for .NET and

J2EE Web Services

Mark Creamer
Consultant

Management introduction
More than a year ago, Microsoft announced its new vision for the future, the so-called
.NET initiative. Broadly speaking, it was about three principle technology areas:

first, there is common language runtime and C# (‘C sharp’)
second, there are a set of enterprise servers which are XML enabled
third, there are ‘Web Services’.

Each of the three principle areas has value independently of the others. Taken together,
the technologies comprise a platform for distributed computing across enterprise
boundaries.

Yet, of these, it is the Web Services area which has become the lead story — at least
from an IT point of view. But it is not only Microsoft that has a story for Web Services;
so do many other software vendors, from as diverse a collection as Sun, BEA, HP,
Oracle, Sybase and many others — as Mark Creamer explores.

36

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2001 Spectrum Reports Limited

Web Services
In essence, Web Services are an old story with new provi-
sions. Take established distributed component models
(DCOM and CORBA), add support for Web protocols on an
interface to a function and the browser is no longer the
only potential client for HTTP-based services.

Web Services are significant because of the integration of
the range of application components. These are intended
to be implemented on different platforms using different
programming models. Historically, however, such grand
intentions required binding with proprietary middleware
APIs, for example for messaging. Unfortunately, there has
not been an industry accepted standard for wire-level mes-
saging.

Now there is. Furthermore, that standard is within both
.NET and the Java platform. It is the Simple Object Access
Protocol (SOAP). It is SOAP that enables Web Services.

SOAP, and more
SOAP runs on top of HTTP, among other transports. This is
crucial because HTTP is ubiquitous and avoids the need to
punch undesirable holes in firewalls. A group which
included IBM and Microsoft, two of the most significant
forces in the software market (with products shipping that
support Web Services today) authored SOAP.

In addition to SOAP, two other standards are fundamental
to Web Services:

the Web Services Definition Language (WSDL)
Universal Description, Discovery and Integra-
tion (UDDI).

As with SOAP, these are XML-based. Unlike SOAP, they are
not required to have a Web Service (although this is highly
desirable).

WSDL is used to describe service capabilities and invocation
procedures. It is roughly analogous to some early, and pro-
prietary, EAI middleware connector functions.

UDDI is a registry specification. It is capable of storing
WSDL, among other things.

Development
These are not the only standards relevant to the Web Ser-
vices technology area. The others, however, are barely out
of their discussion groups (so far). More important than
these, by far, is the development tool set.

Development tools deserve attention immediately. Over
past years, middleware — and platform suites in general —
have focused mainly on the run time environment. Vendor
answers to development questions were along the lines of:

’we support your favorite IDE’
or ‘we have an SDK you can use to create your
own development tool set’.

This was manageable, if barely. But it was certainly not
desirable, or helpful, if you were planning a distributed sys-
tems development project or infrastructure.

In a Web Services scenario, where developers are in differ-
ent organizations and potentially using hundreds of com-
ponents, there is a real risk that scale itself becomes a
problem. There must be support in development work-
benches for:

data model aggregation
automatic generation of interfaces
discovery of services.

In addition, there needs to be coherent (and consistent)
support for team-based application component assembly.
And there must be:

project management support
independent budget monitoring
accounting
work flow management (for the whole engi-
neering process).

The back plane of the Web Services vision is the same as for
distributed components in general — mass customization
and rapid assembly of applications, albeit with a cross-fire-
wall spin added. Given that, today, B2B trading, e-business
and customer-facing applications represent the majority of
new application initiatives, the battle among the major
software vendors to win your business — as the Web Ser-
vices platform of choice — has already begun. These three
areas, by definition, are cross enterprise applications.

Needless to say, we are some years away from seeing all
these concepts made available in development environ-
ments specifically for the purpose of supporting the pecu-
liarities of Web Services projects. In this context, therefore,
the Web Services vendors have yet to make a serious
improvement on what their predecessors had failed to do.

.NET
The core product for .NET platform is Visual Studio.NET.

A reality check for .NET and J2EE Web Services

37

The focus, for Microsoft, is to support development of
new, Internet-based, subscription services as a part of cre-
ative projects. One need only look as far as plans for Win-
dows XP to observe that Microsoft sees applications
becoming much more ‘lively’.

While the Microsoft solution is intended for Windows only,
at least as far as serving up the resulting services goes,
many programming languages are supported for Web Ser-
vices — and for consumption of them. In a time of scarce
technical talent, this is a plus. Microsoft intends to be the
first to offer a complete package that supports the Web
Services concept.

Available now, or shipping this year, are:

development tools
enterprise server software products
a host of ready-to-use services (like an email
Inbox, Wallet, Contacts, Filing, Device Proper-
ties and so forth)
Microsoft applications, including Office, which
are being Web Services-enabled.

Sun
The Sun platform, ONE, is — as you might expect — based
on J2EE. ONE is commercially oriented and offered primar-
ily, although not exclusively, on the iPlanet Integration
Servers.

J2EE — from multiple vendors, not just Sun — is the only
alternative to the .NET/WinTel combination. That said,
Sun’s focus continues to be to try to prevent Microsoft
from making inroads into the higher levels of computing.

Sun was later than most with its Web Services announce-
ments. But it has picked up momentum recently, adding a
Web Services Pack that includes XML-based Java APIs (JAX
— Java APIs for XML) which is intended to foster integra-
tion between Web Services and J2EE such as:

JAXP (Processing), for DOM support, SAX, XSLT
and schema processing support
JAXM (Messaging)
JAXB (Data Binding)
JAXR (Registry)
JAXRPC (Remote Procedure Calls), the mecha-
nism for XML-based remote procedure calls in
the Java programming language.

Sun is taking the approach that developers need only write
ordinary EJB components and the application server will do
the rest. This is in stark contrast to the .NET approach,

where Web Services support is found in the components
themselves.

Sun’s position on JAX and ebXML appear intended to slow
adoption of Microsoft’s C# and common language run
time. However, the Sun story is not the only Web Services
alternative in the Java market.

IBM
IBM has a strong Web Services platform for Java, aptly
named the Web Services Architecture. Built around its
WebSphere application server and WebSphere Studio tools
(both IDE and downloadable SDKs), IBM offers a typically
IBM-like infrastructure that supports all Web Services
related standards — and not only the core ones (SOAP,
WSDL and UDDI).

Unfortunately, ‘typically IBM-like’ means that the tools and
installation are complex. This should not be surprising. In
contrast to Microsoft, IBM’s focus is on legacy integration
with the Internet. This is readily explained: IBM has so many
customers — with applications locked up behind firewalls
in large data centers which are trying to escape — that any
other approach would have alienated those customers.
Indeed, many of these customers are also regular clients of
the IBM Global Services division, for which Web Services
offers a considerable upside in the way of future business.

The result is that IBM remains a clear choice whenever
there are:

significant legacy integration requirements
or complexity has to be addressed.

On the down side, IBM:

is unlikely to appeal to those who want to
start from scratch or to be ‘lively’
has committed to include Web Services sup-
port only in its Java/EJB tools and technolo-
gies.

BEA
Another leading Web Services provider with good legacy
capabilities is BEA. Its e-business platform is based on its
WebLogic application server. BEA has recently announced
Java Connector Architecture (JCA) support. JCA is signifi-
cant because it permits EJBs to be populated from legacy
artifacts, and EJBs are the likely components which will
expose CORBA objects (and mainframe procedures) as
Web Services.

38

BEA was later than one might expect with its Web Services
announcements, having virtually nothing of significance to
say until the second quarter of 2001. The JCA announce-
ment is significant, given that WebLogic is the market lead-
ing J2EE certified application server.

Major vendors of packaged applications will be attracted to
BEA because of this. It offers them a chance to portray a
Web Services solution without cannibalizing their own
monolithic suites and revenue models. JCA is the secret
ingredient that makes the application server an integration
solution. An integration platform that incorporates Web
Services is a powerful construct.

If BEA has an Achilles heel in the Web Services arena, it lies
in its lack of the equivalent, commercially accepted and
comprehensive, development tools that Microsoft or IBM
possess. Balancing this is that you can use most IDEs in
association with BEA products. But, as discussed earlier, it
appears that Web Services adds a sufficient number of dis-
tinctive requirements that most customers prefer tightly
integrated Web Services development support to be avail-
able from their Web Services supplier.

HP
HP originally articulated the vision of Web Services — in
1999, as part of its then proprietary e-Speak architecture.
Today, its netaction suite — based on the acquired Blue-
stone application server — is shipping. This is still based on
the original e-Speak technology to some degree, and con-
sequently is not as standards-based as many of the other
competing vendors who started down the Web Services
route that much later.

The HP architecture calls for SOAP and UDDI support, but
the product today is simply XML-based. One benefit is that
netaction supports C and C++ — in addition to Java. It can
be used on Windows NT in addition to HP-UX and Linux.
Furthermore, HP has added renewed life to HP Process
Manager (the former Changengine product) — by casting
this into the realm of Web Services.

Having made all these points in favor, HP does not have a
software orientation or sympathy. One consequence is that
it lacks the tradition of developer loyalty to its tools which
Microsoft, IBM and BEA possess — which must limit HP’s
market appeal in the short and medium term.

Other players
Other well known players have announced their own, and
different, Web Services initiatives. These include:

Borland
Iona
Oracle
SilverStream
Software AG
Sybase.

In addition a number of startups — like Asera, Bowstreet,
Eltegra and WebCollage — continue to enter the market to
exploit gaps and grab mind share. They do not, however,
have hardware, operating systems or legacy software tech-
nology businesses to prop up. They are, thus, free to push
the envelope with new concepts. On the other hand, few
of these recent entrants have much in the way of revenues,
which is not the case for Microsoft, IBM, BEA, Oracle, Sun,
Sybase, etc.

Catches
Given all the hype and commitments from vendors of every
ilk, there must be some catches. Do not expect any vendor
at such an early date to have a complete architecture filled
with all the constructs you need, or even a sufficient num-
ber to provide interoperability (see also page 18). A sub-
stantial investment in pre-purchase due diligence is
prudent, if not mandatory.

We have had standards-based products for years, or so it
has seemed. But remember how long it took for CORBA
implementations of ‘one specification’ to become interop-
erable? This was not on account of pre-IIOP CORBA; it was
due to the fact that vendors are competitive and the only
air-tight specification is running code.

Three potential pitfalls or issues, which Web Services face,
illustrate the difficulties:

UDDI pervasiveness: UDDI is a community
process with over 200 members which is not
likely to settle down and offer a tight specifi-
cation anytime soon; people will have to start
UDDI activity inside a company as a comple-
ment to DNS and LDAP, then move towards
use within small, trusted, B2B communities
before UDDI ‘brokers’ emerge — and you will
have to decide if you want their content; bal-
ancing this, there is considerable potential for
commercial exploitation (as per Yahoo)
the volume of security/authentication requests
skyrocket as finer grained functionality makes
its way onto the Internet (PKI takes on a new
level of importance, SAML (security profile
exchange), XKMS (key management) and

A reality check for .NET and J2EE Web Services

39

XTASS (authorization) are all under develop-
ment); while security requirements are more
complex (and certain to be based on policy
management eventually), the ramifications of
spurious purchase orders and wire transfers
are worrying — EDI VANs or networks like
S.W.I.F.T will be worth understanding for their
lessons learned
service levels across a complex ecosystem of
nodes on an inherently flaky Internet remain
problematic; systems management vendors
have been noticeably silent when it comes to
Web Services — yet they are needed, not sim-
ply for use of Web Services in their platforms
but to support failover, load balancing, alert-
ing and instrumentation in Web Services
enabled applications.

Can .NET and/or J2EE stand up to
Web Services requirements and
expectations?
.NET can stand the load for smaller, non-critical projects
today even though Microsoft has had to tune its architec-
ture, and tools, more than J2EE needs to do. The tight inte-
gration of ASP/IIS/MTS/MSMQ and VB/VC/VJ — all basically
COM+ centered — is producing a tightly coupled paradigm
on top of (some argue within) the operating system itself;
this is proving a wrenching challenge.

Yet history suggests that Microsoft is up to it. Microsoft’s
capability to deliver tools and infrastructure middleware is
proven (if not often on time). This suggests that .NET will
be a viable platform for serious projects in 2002 (it claims
2001, but that looks dubious).

The use of .NET will likely remain where Microsoft has
always been strongest — in small to medium scale deploy-
ments or until proven otherwise. This is also where ease of
use and fast development cycles are important. Host Inte-
gration Server will also play a pivotal role. This is Microsoft’s
entry point for its Web Services to link to legacy applica-
tions on legacy platforms.

J2EE would be a disappointment if not for IBM. A strong
developer channel (a clear Microsoft strength) is needed for
Web Services to fly. Where Sun has yet to tread, IBM has
already trodden.

IBM already has a strong developer constituency, although
this — with its legacy heritage — is very different to that
owned by Microsoft. Despite this, it was IBM and Microsoft
working together that produced several key standards for

Web Services. Both IBM and Microsoft are committed to
SOAP (along with many other vendors — with Sun only
recently joining up).

IBM also supports all the key standards required for Web
Services, though not always via J2EE directly. IBM has EAI
middleware (MQSI/WebSphere Business Integrator) as well
as wrappers for enterprise-level applications on CICS, IMS
and Tuxedo.

BEA, with the marketing leading application server (in
WebLogic), has stated its intent to implement JCA. This,
potentially, will offer an alternative gateway for Web Ser-
vices to link to legacy environments and commercial appli-
cation packages.

Most other ISVs supporting J2EE have announced Web Ser-
vices strategies for their product lines. Some platform ven-
dors, like IONA with its iPortal XMLBus, have been shipping
for some months. On this basis J2EE products for Web Ser-
vices are ready for consideration.

Yet careful evaluation of product choices is still necessary
since — with the clear exception of IBM — there really is no
one-stop, multi-platform alternative yet. This is particularly
true when comparatively large implementations, with
many concurrent users, are the objective.

Management conclusion
A few months ago it appeared that Sun might fragment
the Web Services initiative by supporting an alternative to
SOAP (ebXML transport). However, Sun’s J2EE application
server partners were already shipping code that delivers
Web Services on their application servers — using SOAP.
Inevitably Sun had to support SOAP or see ONE shrivel —
and arch rivals Microsoft and IBM walk away with the
riches. BEA, IBM, Sybase, Oracle and IONA are among the
other J2EE front-runners which, coming from a proven
middleware heritage, provide decent offerings.

Microsoft is still ahead in terms of comprehensiveness —
offering more tools, more discreet server products and
more architectural skin in the Web Services game. But it is
still a Windows-only scenario for developing and deploying
your Web Services. Recent Linux porting announcements
to the contrary, Microsoft has in the past made agreements
(for example with Software AG) for large parts of Windows
and DCOM/COM+ to be made available as third party plat-
forms. None of these has had significant commercial
impact on market acceptance or breadth of support.

While there are a number of specialists who have entered

40

the software market specifically to address Web Services,
making a commercial success of distributing Internet-based
components remains an unproven market — even though,
logically, there is a demand for business processes, portals,
and complementary tools, etc. Tracking partnership agree-
ments with other vendors (especially the larger ones) will
likely indicate which — if any — of these will survive.

That said, Web Services is no longer likely to be a passing
fad — any more than distributed components are such a
fad. Web Services are a natural evolutionary step for taking
applications from behind the firewall to going through the
firewall for business to business connections. On this basis,
organizations should be preparing to select and experiment
with Web Services development tools now — in prepara-
tion for tactical deployments of such projects in 2002.

In this context, first efforts should be directed inside the
organization — where matters can be controlled. Subse-
quent steps should be through the firewall, in non-critical
application scenarios.

The absence of standards for transaction management,
security and service level management (for example,
‘eventing’ and management consoles) should not stand in
the way. Opportunistic software vendors will plug gaps
with solutions in due course.

On the other hand:

strive to avoid lock-in to peripheral services
understand that the core to be protected is the
fundamental Web Service itself
beware of Web Services components available
on the market that are not based on SOAP,
WSDL and UDDI.

Even though useful and almost always attractive, propri-
etary Web Service components will defeat the intent of the
‘open’ vision. You will only be able to use them inside orga-
nizations deploying the same proprietary technology. But is
that not where we started? Is that not what Web Services
are trying to avoid?

A reality check for .NET and J2EE Web Services

41

Model Driven Architecture

Tom Welsh
Consultant

Management introduction
In March 2001 the Object Management Group (OMG) made what could be the most
important announcement in its 12-year history. Unfortunately, the revolutionary nature
of the new Model Driven Architecture (MDA) was thoroughly obscured by the state-
ment’s abstractions:

“In response to the growing and ever present challenge of enterprise interoperability,”
read the statement, “the MDA offers a full-lifecycle approach to solving the problems
of developing, deploying and integrating existing distributed systems with emerging
technology, assembling virtual enterprises that span multiple companies, implementing
business intelligence solutions and enterprise information portals in a multi-vendor
environment”.

The automatic generation of application code from detailed models is an old dream. It
goes back to the early days of Information Engineering,. It received a crushing setback
with the collapse of IBM’s AD/Cycle strategy in the early 1990s.

The question is whether software technology has now evolved to a point where MDA
is a practical possibility. Surprisingly, as Tom Welsh explores, the answer appears to be
a qualified ‘Yes’.

42

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2001 Spectrum Reports Limited

Interoperability
Ever since its inception in 1989, the OMG has been dedi-
cated to interoperability. For the past decade its slogans
have been:

there will not be consensus on hardware plat-
forms
there will not be consensus on operating sys-
tems
there will not be consensus on network proto-
cols
there will not be consensus on programming
languages
there must, therefore, be consensus on inter-
faces and interoperability.

To this it has added one more affirmation. There will not be
consensus on middleware platforms and component
models.

Rather than trying to make disparate applications interop-
erable by imposing a standard format for the interfaces
between them, however, the OMG has now become still
more ambitious. It plans to make applications interoperable
by deriving them from common design models — in its
abstract technical terms, “distilling out middleware-
independent semantics”.

MDA specifications are based on a platform independent
model (PIM) of business functions. The idea is that a single
platform independent model can be translated to yield
platform-specific models (PSMs) for a variety of middleware
platforms — which in turn hide most of the underlying
operating system and network details.

According to OMG, the benefits of MDA will include:

reduced costs throughout the application life-
cycle
reduced development time for new applica-
tions
improved application quality
increased return on technology investments
rapid inclusion of emerging technology into
existing systems.

The chequered history of modeling
Ever since programs were first written, the programmer
had to have both:

a clear overview of the problem to be solved
the logical steps leading to a solution.

These correspond, roughly speaking, to analysis and
design. Analysis normally denotes the process of formulat-
ing the problem to be solved, without any indication of the
methods to be used. Design follows on from analysis, and
entails working out (in as much detail as necessary) exactly
how the given problem can best be solved.

When problems were relatively simple, analysis and design
could mostly be done with pencil and paper — or even in
the programmer’s head. Once the era of ‘throwaway’ pro-
grams had passed, however, it came to be recognized that
software is a valuable asset.

But it is also perishable. Without someone who can under-
stand its design, software cannot safely be modified. It
then loses its most important characteristic. Complete, eas-
ily understood and up to date analysis and design docu-
ments are a vital safeguard against this eventuality.

In the late 1970s and 1980s, the principles of structured
analysis and design were laid down by a number of
‘methodologists’. By the mid-1980s, a few pioneers were
starting to talk about object oriented analysis and design
(OOAD).

Although each method differed from the others in details
of notation, there was much common ground. Essentially,
the idea was to draw standardized pictures of:

data structures
data flows
procedures
and the like.

If analysis and design could be carried out at this level, it
made it much easier for everyone involved to participate.
This included end users and project sponsors as well as sys-
tems analysts and programmers.

One serious problem that arose, however, was the diversity
(and multiplicity) of methods. No consensus emerged,
partly because new ideas were succeeding each other so
rapidly.

Workstations and
the CASE connection
The consequent fragmentation helped to constrain the use
of analysis and design methods to a small minority. Instead,
most programmers went on writing code straight from the
requirements, sometimes with the help of flowcharts at
least until Apple Macintoshes and IBM-compatible PCs
started to appear on desks (soon to be followed by power-

Model Driven Architecture

43

ful UNIX workstations). All three delivered graphical soft-
ware analysis and design as attractive applications, and so-
called CASE tools soon proliferated.

The challenge was, nevertheless, to generate source code
automatically from the design models. This idea became
associated with Information Engineering and — according
to James Martin, its best-known advocate — Information
Engineering is “[t]he application of an interlocking set of
formal techniques for the planning, analysis, design and
construction of information systems on an enterprise-wide
basis or across a major sector of the enterprise”.

What could be called the ‘first wave’ of modeling technol-
ogy culminated in IBM’s AD/Cycle ambitions, which envis-
aged automated generation of applications. CASE tools
from ‘best of breed’ vendors were to interface with IBM’s
Repository — which would be the central co-ordination
point for all analysis and design metadata.

It was a great idea. Unfortunately it collapsed on account
of several glaring weaknesses:

the process of agreeing standards and
rolling out compliant products took too
long
AD/Cycle did not cater for emerging or non-
IBM platforms (such as UNIX and Windows)
development Repositories turned out not to
be the ’modest extensions’ of known database
technologies that had been expected
the whole apparatus, on top of every-
thing else, was too complicated and too
expensive.

In retrospect, AD/Cycle — and, to be fair — Information
Engineering shared one questionable assumption in partic-
ular. This was that modeling should be done on an enter-
prise-wide basis. The preparation of enterprise information
models was a virtually impossible task for an organization
of any reasonable size, unless it froze itself in time (not an
action that most businesses were or are prepared to con-
template).

OOAD arises
In the early 1990s OOAD methods began to predominate.
Again there were many of them, arguably too many.

The critical breakthrough came in 1996-1997, when three
of the leading methodologists (Grady Booch, Ivar Jacobson
and James Rumbaugh) agreed to merge their ideas. Subse-
quently their employer, Rational, submitted the resulting

method to the OMG, calling it the Unified Modeling Lan-
guage (UML).

While imperfect, like all compromises, UML was accepted
by large numbers in the IT community — vendors and
developers alike. For the first time the IT industry had a sin-
gle, standard analysis and design method. By 1999-2000
all important modeling tools supported UML, allowing
prospective purchasers to compare other aspects — such
as:

reliability
completeness
performance
price.

OMG, MOF, UML and XML
At the same time, OMG members invested much time try-
ing to tease out the implications of UML. For a start, they
considered whether other meta models — in other words,
modeling methods — might be needed in future.

To ensure their compatibility with UML, OMG adopted the
Meta Object Facility (MOF). This provides a standard ‘meta
meta model’ — a framework within which any number of
consistent meta models like UML can be created and
worked out.

Next on the agenda was a standard format for communica-
tion between modeling tools, repositories and other prod-
ucts that make use of meta data. Given the popularity (and
power) of the eXtensible Markup Language (XML), this was
a natural choice. The outcome was XMI Metadata Inter-
change (XMI), which encapsulates metadata within XML
documents.

The Common Warehouse Meta model (CWM) was created
— using MOF and XMI — to provide a standard means of
exchanging metadata which described data warehouses.
This was extended, eventually, to embrace relational, multi-
dimensional and record-based data definitions, followed by
more and more types of meta data.

In September 2000 the Meta Data Coalition (MDC), to
which Microsoft had entrusted the development of its
Open Information Model (OIM), voted to merge with
OMG. This decision left CWM, like UML, as the only broad-
based industry accepted initiative in its space. [MOF, XMI
and CWM are essential for MDA but they are not described
further in this analysis — primarily for reasons of space.]

44

The architecture
The OMG has published a diagram representing the MDA
(Figure 8.1). This picture accomplishes several things:

it replaces the older Object Management Archi-
tecture (OMA) diagram (Figure 8.2); this does
not mean that the OMA is no longer valid, or
that CORBA is being relegated to the back-
ground — rather that the OMG is building a
new layer of abstraction which goes beyond
CORBA
the MDA diagram becomes an official symbol
of the OMG’s work
the diagram can be used to explain some of
the basic properties of the MDA.

At the center of the diagram is the MDA itself, in close
association with UML, MOF and CWM. This is the world of
platform independent models. In the next ring are all the
middleware environments for which platform-specific
models can be supported. Currently, the list includes
CORBA, XMI/XML, .NET, Java and Web Services but any other
environment could be added, in principle.

The third ring features a partial list of pervasive services that
can be standardized through the MDA — directory, trans-
actions, events and security, to name but a few. Lastly, the
‘spears’ projecting from the sides of the diagram denote
the numerous vertical industry domains within which the
MDA can be of value.

On the face of it, creating a platform independent model is
fairly easy. All that is required is to construct a UML model
representing the problem to be solved, in such a way that
no assumptions are made about what hardware or soft-
ware will be used to implement the model.

The OMG has placed no limit on how many levels of plat-
form independent models can exist (it is simplest to assume
only one). However some profiles — such as the EDOC Pro-
file for UML described in the following section on specifica-
tions — may require more. There may, for instance, be a
business model and a platform independent component
view. Having completed the business model, that would be
mapped to a component view by selecting appropriate
business components.

The next step (Figure 8.3) illustrates the heart of MDA. By
applying specific mappings to the platform independent
model, it is translated into one or more platform specific
models for particular middleware platforms — for example:

CORBA
Enterprise Java Beans (EJB)
the Simple Object Access Protocol (SOAP).

From independent to specific
At this point some interesting points of detail emerge. The
mappings used to convert a platform independent model
into a given platform specific model will, in the first

Model Driven Architecture

45

Manufacturing

Space

Transportation

Finance

W
eb

Java

CORBA

Model
Driven

Architecture

MOF CWM

UML

D
ir

ec
to

ry

Pe
rv

as
ive

 Se
rv

ice
s

XM
I/XM

L

NET

Security

Transactions

E-commerce

Telecom

HealthCare

More ...

Events

Figure 8.1: Model Driven Architecture (Source: OMG)

46

The Object Management Architecture (from the OMG —
the Object Management Group) envisioned a complete
distributed environment. The foundation is built upon the
concept of an Object Request Broker which:

manages communications between the
OMA's components
provides the basis by which objects interact
in a heterogeneous and distributed environ-
ment.

The desire is that objects should be independent of the
platforms on which objects sit. In performing its task an
Object Request Broker (ORB) relies on the OMG's defini-
tion of Object Services which, in turn, are responsible for:

creating objects
providing access control
keeping track of relocated objects
etc.

Common Facilities and Application Objects are the com-
ponents closest to the end user. Their functions invoke
services of the system components.

The Object Model defines common object semantics for
specifying the externally visible characteristics of objects in
an implementation-independent way. In this model,
clients request services from objects through a well-
defined interface. This interface is specified in the OMG's
Interface Definition Language. Clients access an object by

issuing a request to the object. The request is an event,
and it carries information including:

an operation
the object reference of the service provider
parameters (if any).

The Figure below shows the main components of the
ORB architecture and its interconnections. The central
component of CORBA is the Object Request Broker
(ORB). It encompasses all of the communication infra-
structure necessary to identify and locate objects, handle
connection management and deliver data. In general, the
ORB is not required to be a single component; it is
defined by its interfaces. The ORB Core is the most crucial
part of the Object Request Broker; it is responsible for
communication of requests.

The basic functionality provided by an ORB consists of
passing the requests from clients to the object implemen-
tations on which they are invoked. In order to make a
request the client can communicate with the ORB Core
through the IDL stub or through the Dynamic Invocation
Interface (DII). The stub represents the mapping between
the language of implementation of the client and the
ORB core. Thus the client can be written in any language
as long as the implementation of the ORB supports this
mapping. The ORB Core then transfers the request to the
object implementation which receives the request as an
up-call through either an IDL skeleton, or a dynamic
skeleton.

Externalization
Security
Time
Properties
Query
Licensing
Collections

Manufacturing Electronic Commerce
Healthcare Transportation
Finance Utilities
Telecoms Business Objects
Lifesciences

Object Request Broker

Lifecycle
Events
Naming
Persistence
Transactions
Concurrency
Trader

Not standardized
by OMG; Scope is
Single application
or vendor

Object Linking
Help Facilities
Desktop Mgmt
Print Spooling

Application

Objects

HorizontalVerticalApplication

Objects

Horizontal

CORBAfacilities

Vertical

CORBAfacilities

CORBAservices

Figure 8.2: Object Management Architecture, a recap

instance, be written by experts in the target platform. Nor-
mally, quite large pieces of work will turn out to lend them-
selves to automation — for instance, setting up EJBs or
when to use entity beans rather than session beans. Even-
tually, some mappings may be completely automated (or
nearly so).

Also, provided that the platform independent model is
detailed enough, there will be no need to make changes to
the platform specific model, or the code that is generated
from the platform specific model. Instead, all maintenance
and application changes are performed at the platform
independent model level.

The prospective benefits are enormous. Testing can be car-
ried out at the earliest possible stage, saving huge amounts
of rework. In addition, all the platform specific models
derived from a single platform independent model — and
all the applications generated from the platform specific
models — should:

be functionally identical
eliminate a whole class of software defect,
especially those arising from the subtle incon-
sistencies that arise between different versions
of a program.

The next step
Th next step is generating source code from the platform

specific models (Figure 8.4). This may not be as hard as
would be expected — for a number of present-day model-
ing tools are already capable of generating code from UML
models for CORBA, EJB and other types of distributed
application.

The advantages of the MDA approach are now obvious:

applications and data models need to be cre-
ated once only, and can then be centrally
maintained or enhanced with a minimum of
additional effort
changes to the core business logic (and data)
are made in one place only, and are then auto-
matically propagated to all deployed applica-
tions that rely on that logic
once written, a single application can be semi-
automatically deployed to CORBA, .NET, Java 2
Enterprise Edition (J2EE) and other environ-
ments.

All deployed applications based on a single platform inde-
pendent model are guaranteed now to share a single, con-
sistent version of the business logic and data. Among other
advantages, this means that they should interoperate.

Specifications and
current UML evolutions
When trying to come to grips with the MDA, it is easy to

Model Driven Architecture

47

Platform
-Independent

Model

CORBA

Model

CORBA
Model

Java/EJB

Model

Java/EJB
Model

XML/SOAP

Model

XML/SOAP
Model

Other

Model

Other
Model

Map a PIM to many
Middleware

Technologies via OMG
standard mappings

Figure 8.3: Mapping a PIM to multiple PSMs

feel that (as Gertrude Stein said about Oakland) “there’s no
‘there’ there”. At present about a dozen OMG specifica-
tions underpin the MDA — there will be many more in
future — but not a single one of these was written with the
MDA specifically in mind. That is because they are all
responses to Requests for Proposal (RFPs) that were issued
before the MDA announcement in March 2001.

It cannot be over-emphasized that the MDA is a logical
extension of the OMG’s previous work. Indeed, it can be
seen as a ‘re-factoring’ of much the OMG has attempted,
since the adoption of the UML specification in 1997.

Other than press releases, presentations and an introduc-
tory white paper, the only document that concerns itself
exclusively with MDA is the 31-page MDA Definition (OMG
reference ormsc/2001-07-01). Written by the Architecture
Board’s Object Reference Model Sub-Committee (ORMSC),
this is the authoritative account of what MDA is and is not.

UML has gone through several minor revisions since being
adopted as a specification in 1997. Now it is going through
a much larger set of changes which will eventually result in
UML 2.0. In all, 37 letters of intent were received from
organizations wishing to contribute their ideas, and UML
2.0 has been split into four pieces:

infrastructure
superstructure
Object Constraint Language (OCL)

diagram interchange.

Work has been going on for some time in these areas —
and is expected to continue throughout 2002. Support for
the Model Driven Architecture is now one of the project’s
highest priorities.

UML evolved from a variety of methods, many of which
had distinctly data-oriented pedigrees. So it should not be a
surprise that it does an excellent job of describing data struc-
tures but is not ‘computationally complete’ — in other words,
there are (many) programs that cannot be expressed in UML.

This is where Action Semantics are introduced. The submis-
sion on this, currently being evaluated, replaces all the UML
constructs that relate to actions and computational behav-
ior. It will allow the construction of both platform indepen-
dent models as well as platform specific models — with
platform specific models that can be executed (by special
interpreters) to test their validity and completeness.

In addition, another submission, the Human Usable Textual
Notation (HUTN), describes how a text language can be
automatically generated from a MOF model. The objective
is a mechanism by which developers and domain experts
may read the contents of MOF models with relative ease.

UML Profiles
Throughout, the OMG has tried to keep UML itself as sim-

48

Platform-
Independent

Model

CORBA

Model

CORBA
Model

Java/EJB

Model

Java/EJB
Model

CORBACORBA

XML/SOAP

Model

XML/SOAP
Model

Java/EJBJava/EJB XML/SOAPXML/SOAP OtherOther

Other

Model

Other
Model

Map PSM to application
interfaces, code, GUI

descriptors, SQL
queries, etc.

Figure 8.4: Generating source code from multiple PSMs

ple and uncluttered as possible. It has accomplished this by
defining overlapping extensions which can be used when
necessary. Such an extension is called a UML Profile, and
consists of a subset of UML (which may be the whole)
together with additional constraints, standard elements
and semantics.

The first profile to be adopted (unsurprisingly) — and the
only one so far — is the UML Profile for CORBA, which pro-
vides a way of expressing the semantics of CORBA IDL in
UML notation. The specification is based on Rational’s
“Rose CORBA” (part of the Rose98i Enterprise Suite).

There are, however, other profiles currently working their
way through the system, including:

a UML Profile for Enterprise Distributed Object
Computing (EDOC)
a UML Profile for Enterprise Application Inte-
gration (EAI)
a UML Profile for Schedulability, Performance
and Time.

The EDOC profile is a massive specification, 447 pages
long, which builds on the International Standards Organi-
zation (ISO) Reference Model of Open Distributed Comput-
ing (RM-ODP). Among other things, it defines mappings to
EJB, Java and the Flow Composition Model (FCM). Profiles
and mappings for the CORBA Component Model (CCM)
and Web Services are planned.

The EAI profile addresses loosely-coupled distribution
through products like:

IBM’s WebSphere MQ Integrator
Java Message Service (JMS)
the C, C++ COBOL and PL/I languages.

The Schedulability profile defines UML extensions for real
time and embedded systems. This will include Quality of
Service (QoS) concepts.

In July 2001 the Java Community Process (JCP) announced
the completion of its UML Profile for EJB. What is notable
about this is that it is the first such specification to be cre-
ated outside the auspices of the OMG. It is not however,
likely to be a diversion: most of the 11 companies primarily
responsible for the work are also members of OMG.

Software Process Engineering
Meta model (SPEM)
Unlike most OMG specifications, SPEM relates to the soft-

ware development process. It deals with collaboration
between roles that perform activities to create work prod-
ucts. Like UML and CWM, SPEM is defined as a meta-
model; it is also a UML profile.

SPEM supports:

the Rational Unified Process (RUP), arguably
the closest thing to a standard development
process that exists today
the DMR Macroscope
IBM’s Global Services Method.

Future specifications
Two important kinds of MDA specifications are anticipated:
Pervasive Services and Domain Facilities. These correspond
quite closely to the present-day CORBAservices and
CORBAfacilities.

Pervasive Services will include important optional pieces of
functionality such as Directory, Security, Transactions and
Persistence. If these can be defined once and for all at the
platform independent model level, a great deal of time and
effort can be saved (and scope for error avoided) at the
specific implementation level.

Domain Facilities refer to vertical industry models, previ-
ously applicable only to CORBA, which under MDA will
become available for EJB, Web Services, .NET and other
important forms of middleware. The Healthcare Resource
Access Decision Facility has already been implemented in
Java and EJB as well as CORBA; other domain task forces
are expected to follow suit.

Market implications
Over a dozen vendors (and several other organizations)
have already committed to support the MDA. Several of
these vendors are already marketing products that at least
resemble the MDA in various ways.

Obviously, no product can yet comply fully with the MDA,
as the specifications are not finished. It is, however, worth
mentioning:

Adaptive, whose repository is MOF-compatible
Interactive Objects Software; its ArcStyler tool
closely mirrors MDA’s lifecycle
Kabira Technologies
Rosch Consulting
Secant
Softeam.

Model Driven Architecture

49

Project Technology and Kennedy Carter already offer mod-
eling and code generation tools based on the methods
worked out by Sally Shlaer and Stephen Mellor of Project
Technology. These products perhaps come closest to the
spirit of the MDA, although they were designed several
years ago and omit the important platform specific model
stage. They generate code directly from the platform inde-
pendent model.

Although no announcements have yet been made, it is
believed that some of the biggest players participating in
the OMG — such as HP, IBM, Oracle and Sun — are work-
ing quietly to support the MDA in their product lines. The
adoption of the MDA industry-wide seems the more likely
because the new architecture is so firmly based on UML
and MOF. As such, it represents an evolutionary rather than
a step change.

Is the MDA good?
Clearly the OMG thinks so, as it did of CORBA. According
to the OMG’s technical director Andrew Watson, there are
two fundamental business arguments in favor of the MDA
— future proofing and the ability to roll out new forms of
middleware without effort and disruption.

Future proofing matters. Today we can ask: ‘five years ago,
did Java or XML figure in your plans?’ Of course not. What
will occur in the next five years that you cannot possibly
predict now? Lots. Being capable of accepting change is
ever more important. The opportunity is to avoid, or
reduce, ‘technology dissonance’.

The ability to roll out new forms of middleware without
effort and disruption will appeal to CTOs and IT directors. It
has more to do with delivery than development. It does not
take great understanding to accept that Java or XML or
.NET are not the last waves of innovation that we will see.

It is high time that there was a standard notation for writ-
ing down business logic and data structures in a platform-
independent way. After all, business logic is coming to be
recognized as an important form of intellectual property.
Yet, in most organizations, it is embedded in reams of
incomprehensible low-level code.

Without hours of effort, even qualified programmers can-
not figure it out. And every time a new system has to be
deployed, or a merger or take-over or other business event
imposes a new platform, everything has to be done over
again. These are sufficient reasons to justify the MDA,
before even considering the development impact.

Management conclusion
Ten years ago ‘platform’ meant a combination of hardware
and operating system. Today there are fewer operating sys-
tems, but the term ‘platform’ has been extended to include
middleware as well as operating system-neutral environ-
ments (like Java). One effect has been to increase the need
for something like the MDA, which promises to generate
platform specific models from platform independent ones
that contain little more than business logic.

If OMG can deliver on the promise of the MDA, we could
be on the verge of a new era in computer programming, as
different from today’s practices as Java is from assembly
language. Better still, there will be no need to cut over
sharply from the old way of writing software. With the help
of ‘reverse-engineering’ tools, existing source code can be
translated to UML models which can then be used as the
basis for new designs.

Gradually, at their own pace, organizations should be able
to enter the world of the MDA and focus their efforts on writ-
ing and maintaining business logic instead of coping with the
myriad distractions of rival operating systems, databases and
middleware that are so beloved of programmers (although not
businesses). And herein lies the rub. The MDA is clearly a
‘good idea’. So was AD/Cycle, at least conceptually — and
the MDA has already gone far past that.

But the development community is conservative. It knows
what it knows and does not like change. You only have to
examine the extreme reluctance of synchronous program-
mers to think asynchronously to understand resistance.
However virtuous the MDA is, its success will depend on it
working and being inexpensive (q.v. AD/Cycle) and being
acceptable to those who will have to use it. Fail on any one
of these and it will likely fail on all — irrespective of its
other virtues.

Yet, let us offer the last word to Microsoft. Ever since it
attained any prominence in 1994-1995, CORBA has been
the target of constant sniping from Microsoft and its allies
— presumably because it was seen as competing with
Microsoft’s own Distributed Component Object Model
(DCOM). In view of Microsoft’s enormous influence with
analysts and the media, this was a substantial handicap (for
CORBA). The MDA is unlikely to meet with such overt resis-
tance:

partly because it is such a logical step forward
from UML
partly because Microsoft has always been a
firm supporter of UML.

50

Enhanced Intranet Subscription

51

ENHANCED INTRANET SUBSCRIPTION
The Enhanced Intranet Subscription provides you with multiple copies of each
Report, for one year, plus additional middleware resources to put on your
Intranet. It includes the following:

a quarterly CD with a 12 month licence to publish the information on it
internally on your Intranet containing:

the Reports of the Calendar year to date
the Reports of the previous Calendar year
the latest versions of the 14 volumes of the Issues in Middleware
Collections (collectively priced at over US$7,500/Euros 8,000 if all
bought individually)
5 printed copies of each quarterly Report (these copies can be
mailed to separate addresses)

only US$4500 or Euros 5000 (saving over US$3,000/Euros 3500 if pur-
chased as an Enhanced Internet Subscription)

Updated Middleware In Action Collections
(5 Volumes, 449 pages in all: US$95 each Volume;
US$245 for all five)

Updated Middleware Architecture Collection (637 pages, $795)
Updated Strategic Issues in Middleware Collection (748 pages, $895)
Updated Distributed Systems and Middleware

Collection (791 pages, $795)
Updated Middleware in Distributed On-Line Transaction

Processing Collection (504 pages, $995)
Updated Middleware in Data Warehouse, Database and

Database Access Collection (225 pages, $375)
Updated Messaging and RPC Collection (514 pages, $475)
Updated Queuing Middleware Collection (436 pages, $495)
Updated OO and Middleware Issues Collection (369 pages, $395)
Updated Middleware and Application Development

Collection (537 pages, $475)
Updated Enterprise Application Integration and Middleware

Collection (308 pages, $395)
Updated Internet and Middleware Issues Collection (426 pages, $495)
Updated Middleware and Message Broker Collection

(240 pages, $395)
Updated Middleware perspectives (46 pages, $150)

To order your MIDDLEWARESPECTRA
Enhanced Intranet Subscription,

call:

(in the USA/Canada) 1-763 502 8819
(Europe/Rest of the World) +44 1962 878333

or email:
spectrum@middlewarespectra.com

Fi
na

nc
ia

l M
ID

D
LE

W
A

R
ES

PE
CT

RA
EEnn

hhaa
nncc

eedd
 IInn

ttrr
aann

eett
 SS

uubb
sscc

rrii
pptt

iioo
nn

Members of the
International Advisory Board

Charles C.C. Brett
President, C3B Consulting Limited &
President, Spectrum Reports

William Donner
Chief Architect, Reuters

Kathryn Dzubeck
Executive Vice President,
Communications Network
Architects, Inc.

Ellen M. Hancock

Paul Hessinger
Vision UnlimITed

Pierre Hessler
Deputy General Manager,
Cap Gemini

H. William Howard
Vice President, Inland Steel
Industries, Inc.

Michael Killen
President, Killen & Associates, Inc.

Dale Kutnick
President, Meta Group, Inc.

Norris van den Berg
General Partner, JMI Equity Fund, LP

Fiona A. Winn
Managing Editor & Publisher
Spectrum Reports

Philip Manchester
Consulting Editor

Additional contributors
include:

Francis X. Dzubeck
Communications Network
Architects, Inc.

Jay H. Lang
Distributed Computing Professionals

Keith Jones
IBM

David McGoveran
Alternative Technologies

Will. Capelli
Giga Group

Amy Wohl
Wohl Associates

Martin Healey
Technology Concepts Limited

Mark Allcock
J.P. Morgan Asset management

Aurel Kleinerman
MITEM

Chris Cotton
Consultant

Ian Hugo
Year 2000 Taskforce

Yefim Natis
Gartner Group

Rosemary Rock-Evans
Consultant

Beth Gold-Bernstein
Hurwitz Group

Tom Heywood
University of Southampton

Eric Leach
ELM

Glen Macko & John Parodi
Digital Equipment Corporation

Randy Rhodes & Troy Terrell
Black & Veatch

John Carter
IBM UK Laboratories

Roy Schulte
Gartner Group

Jim Johnson
Standish Group

Tom Curran
TC Management

Alfred Spector
IBM Corporation

Max Dolgicer
International Systems Group, Inc.

Peter Bye
Unisys Systems and Technology

Ely Eshel
MINT Communication Systems

Ken Orr
The Ken Orr Institute

Peter Houston
Microsoft Corporation

Jeff Tash
Database Decisions

Ed Cobb
BEA Systems

Bernard Abramson
Merck & Co.

Mirion Bearman and Kerry
Raymond
CRC for Distributed Systems
Technology

Geoff. Norman
Xephon

Jim Gray
Microsoft Research

Jason Longo
PRL Scotland

Wayne Duquaine
Grandview DB/DC Systems

Steve Craggs
Saint Consulting

Tom Welsh
Consultant

Gustavo Alonso
Swiss Federal Inst. of Technology

Mark Whitney
Delta Technologies

MIDDLEWARESPECTRA
is published and distributed
worldwide by:

USA and Canada:
Spectrum Reports, Inc.

Subscription Center
PO Box 32510,
Fridley, MN 55432, USA
Telephone: 763 502 8819
Fax: 763 571 8292

UK and Rest of the World:
Spectrum Reports Limited

Research and Editorial Office
St Swithun's Gate, Kingsgate Road
Winchester SO23 9QQ
England
Telephone: +44 1962 878333
Fax: +44 1962 878334

Subscription Centre
St Swithun's Gate
Kingsgate Road
Winchester SO23 9QQ
England
Telephone: +44 1962 878333
Fax: +44 1962 878334

Email and Internet

Email:
spectrum@
middlewarespectra.com

World Wide Web:
www.middlewarespectra.com

ISSN 1460-7220

	Contents
	Cross border trade order routing and settlement using middleware
	Automating error correction and repair at HypoVereinsbank
	Integration banking — using middleware to integrate a network- centric banking strategy
	Addressing pitfalls with EJB development and deployment across different J2EE application servers
	Application brokers or application servers: a 21st Century dilemma
	The state of business rules
	A reality check for .NET and J2EE Web Services
	Model Driven Architecture

