
MIDDLEWARESPECTRA

Volume19 Report1

Contents February 2005

2 Middleware’s progress
Edward Cobb, BEA Systems

10 Web Services standards process: 
coming off the rails?
Tom Welsh, Consultant

18 Making the mainframe a Web Services peer player 
Mark Lillycrop, Arcati

24 Service management
Keith Jones, IBM Software Solutions Worldwide

32 Enterprise Service Bus – buzz word or business winner,
techno-babble or critical enabler?
Nick Denning, Strategic Thought

incorporating FINANCIAL MIDDLEWARESPECTRA



Middleware’s progress

Edward Cobb
Vice President of Architecture and Standards
BEA Systems

Management introduction
Edward Cobb is Vice President of Architecture and Standards at BEA Systems (San Jose,
CA). At BEA he is responsible for co-ordinating and managing BEA’s involvement with
external standards organizations. In addition he has the challenge of managing BEA’s
co-operation and partnership arrangements with IBM and Microsoft regarding Web
Services and the Java partnership with IBM. 

Mr. Cobb joined BEA in 1997. Before this he worked at IBM, principally with IMS and
CICS middleware. As such he is in an excellent position to discuss:

the past evolution of middleware over the past five years, and more
where middleware is going in the future
how and why standards are playing an increasingly important role in the
way that middleware is moving forward.

2

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2005 Spectrum Reports Limited



The middleware arena 5 years ago
Five years ago was an interesting time for middleware,
especially looking back now. It was about the ‘high’ point
(if you can reasonably describe it like this) of the
Internet/dot.com frenzy. At the time BEA was about 5 years
old, having been founded in 1995. It purchased Tuxedo
from Novell in 1996 and then WebLogic (with its Tengah
Application Server) in 1998. It now had the foundations of
today’s middleware portfolio. 

1999 was important for BEA for many reasons. It was the
year that Application Server sales started to take off. BEA
achieved sales of more than $464M for the year ending
January 2000 and, by the end of the next year, sales had
increased to a $1B annual run rate.

This was also the time when companies were looking for
technologies to exploit the Internet. If you recall, Java had
arrived about 3 years earlier and was, by 1999, in full flow.
Initially it had been touted as a client-side technology. But
by the late 1990s it had begun its transition towards server-
side relevance, a move that was encouraged with the
emergence of Application Servers plus the announcement
of what is now called Java 2 Enterprise Edition (J2EE). 

This was also about the time of the rift between Sun and
Microsoft over Java — which caused Microsoft to go off
and develop ‘something different’, which would become
its own server platform, Microsoft .NET. A direct conse-
quence of this decision was the subsequent popularity and
high growth of Application Servers as exclusively a Java
phenomenon, for a very long period of time.

A second dimension, that I think most now appreciate, was
that the dot.com era was based too much on the promise
of the Internet being combined with what ‘might be’.
Everybody knew that the Internet was important. The prob-
lem was that there was too much focus on what you might
potentially use the Internet for in the future — rather than
on how one could use the Internet to streamline what was
already being done in businesses today. 

Let me give an example. You will recall that there was lots
of talk about global supply chains that would enable busi-
nesses to obtain optimum pricing from anywhere. The con-
cept was that businesses would be able to collect the best
possible deals from suppliers anywhere on the globe. This
proved to be fanciful. The focus should have been on the
gains that could be obtained just by utilizing the Internet as
a way of streamlining what was already happening within
an organization and among its existing suppliers. 

Having failed dismally to deliver this grandiose vision there

has been massive retraction. The past 3-4 years have been
about more limited goals, concentrating on what can be
achieved today, rather than striving to obtain utopia at
some time in the future. The dot.com bust has proved to
be a fundamental re-shaper of customer attitudes, and this
applies across the whole middleware arena.

The Application Server
The original purpose of an Application Server was to enable
users of the Internet to access applications and data already
running on back end systems. In the beginning Application
Servers were essentially about providing an Internet front
end to existing applications and data. 

This was a direct spin off from HTML, Web Servers and
browsers. In 1999, probably the height of the browser
experience, customer organizations were looking to enable
millions of browsers to access the applications and data
that they already possessed on existing host systems. 

To begin with, Application Servers were used to enable a
Web Server to:

pass a request to (say) a database 
receive the response back
pass this back to the Web Server for display on
the originating browser.

This started out as a form of client/server, in much the same
way as PC-based client/server developed — with the excep-
tion that there was not as rich or as heavy a client (in the
sense that the client could have a large amount of pro-
gramming on it). That particular constraint came from the
limitations of network technology to support rich clients by
downloading applets to the browser., a transient phenom-
enon that would be subsequently overcome — but not
before the paradigm had shifted. 

But what was really happening was the creation of a mid-
dle server tier. This tier between the actual browser and the
applications or data at the back end performed the func-
tion that, in the traditional PC-based client/server world,
might have otherwise been performed by a PC.

Subsequently (and this was similar to what happened with
traditional client/server), developers discovered that you did
not necessarily want to go directly to the database all the
time, and that there were certain advantages to be gained
if you put application functions between the browser and
the data access layer. From this realization was born (or re-
born) the Application Server — a Web-oriented version of
the familiar transaction processing monitor. 

Middleware’s progress

3



This is, essentially, what today’s Application Servers have
become. They provide the transaction processing linkage
between Web Servers (which serve browsers) and existing
applications and data. They also provide a platform on
which to write new applications (or services) that support
the browser/Web Server combination in its own right.

More recently
As time progressed, even more changes emerged. First of
all, I think as far as the Web itself is concerned, people
began to lower their expectations. Rather than looking for
the universal supply chain management solution that
involved the entire known universe, developers started to
consider how they might use the Web to make existing
operations more efficient.

One result of this was that the notion of the ‘big Internet’
as being beyond and outside an organization’s network
began to wither. Instead the focus was increasingly on
moving Internet technology closer inside each organization
or extended enterprise. 

Applications shifted focus accordingly. Today you do not
hear about ‘open market buying’ systems for global supply
chains. Instead the discussion is narrower: it is about the
specific supply chain which involves existing business part-
ners or customers — people or organizations with whom

you already have a contractual kind of relationship. It is no
longer about the universe. 

The second development was the realization that the exist-
ing massive infrastructure of systems, networks, applica-
tions and data that had grown up over many, many years,
not only could not be replaced, but was a valuable source
of business differentiation. Web-based technology was, in
effect, ‘just’ another alternative or option that needed
somehow to be tied together with all the existing IT invest-
ments. Thus the integration challenge re-raised its ugly
head with a vengeance (in my view, integration has always
been an issue, albeit one where the IT industry — both ven-
dors and users — have never done a good job of address-
ing it adequately, much less solving it).

The Application Server needed to evolve again. All the new
Java-based applications that had been developed to take
advantage of the Internet had become yet another exam-
ple of technology that needed to be integrated with the
existing IT infrastructure at the back end (Figure 1.1). 

In my analysis, integration never really declined in impor-
tance. After the dot.com crash, and with the renewed
emphasis on business value over technology and using
what already exists, integration has become ever more
important. That said, I think one aspect that did change —
from an integration perspective (and we are still in the

Portal/UI
Integration

Build

Buy and
Integrate

Asynchronous (Messaging oriented)

Synchronous (request/response oriented))

EAI

Data
Integration

B2B

Web 
Application

Servers

Web Application/   
Integration Platform

Figure 1.1:  The Application Server integration dimension

4



midst of this for not all have made the transition completely
— is that integration is increasingly perceived as needing to
be based on standardized technologies. Certainly a number
of IT vendors, and BEA is one of the more prominent, have
argued that the merits of using standardized technology
offer more than the myriad of different proprietary tech-
nologies (that have been around for a long time) can do.
The hope is that, in the not too distant future, there will be
a market consolidation in the integration space similar to
what has happened with Web Servers, Application Servers
and databases. 

From a business perspective I have long been puzzled why
the integration market — which has been around for a
long, long time — has not seen the consolidation you
would expect to happen. There continue to be lots and lots
of moderately important integration vendors who are
either modestly successful or manage (marginally) to sur-
vive (usually from consulting rather than product revenues). 

Why is this? I am not completely sure. Part of it has to do, I
suspect, with the fact that integration is a hard problem to
solve: it requires tying together so many different moving
parts, most of which were designed to be standalone solu-
tions.

Furthermore, every organization has its own particular
combination of different moving parts and none of the

individual moving parts has yet to see sufficient motivation
to standardize for the benefit of the other moving parts.
Thus, SAP (for example) sells its applications based on solv-
ing a specific business problem, not how well those appli-
cations integrate with existing transaction systems,
Application Servers or anything else. 

In addition, integration has always required point solutions
with lots of consultants or specialists to figure out how to
tie existing applications into the latest version of SAP, or
Oracle or PeopleSoft or whatever. The result has yet to see
a common theme emerge.

Beyond integration, there has been consolidation, primarily
driven by the dot.com bubble collapsing. One relatively
recent example is what has happened in the Application
Server space. There a few larger vendors — BEA, IBM and
Oracle being the most prominent — have become bigger
as organizations prefer to buy from the market leaders,
with the new alternatives not being small commercial oper-
ations but rather Open Source Application Servers like
JBoss, the Geronimo project (from Apache) or Tomcat. 

The most import exception is Microsoft which, with .NET,
embraces Application Server functions without offering an
Application Server per se, in part because of its lack of Java
support (which many view as a defining characteristic of an
Application Server, even though there is no technical 

Unified Portal Framework

Enterprise Portal 
Architecture

Enterprise 
Integration

Unified Portal Framework

Enterprise Portal 
Architecture

Enterprise 
Integration

Portal Lifecycle Management

Developmen
t

Framework

Intelligent
Administration

Adaptable
Delivery

Portal Lifecycle Management

Developmen
t

Framework

Intelligent
Administration

Adaptable
Delivery

Content Search Collaboration Commerce Interaction 
Management

Portal Business Services

Content Search Collaboration Commerce Interaction 
Management

Portal Business Services

ID
E

B
u

si
n

e
ss

 C
o

ck
p

it
 (

W
e
b

-B
a
se

d
)

M
on

it
or

A
dm

in
Co

nf
ig

ur
e

U
pd

at
e

M
on

it
or

A
dm

in
Ch

an
ge

IT
 C

o
ck

p
it

 (
W

e
b

-B
a
se

d
)

Java PageflowsJava Pageflows Java Web ServicesJava Web Services Java ControlsJava Controls XML BeansXML Beans

Platform Kernel
Unified RepositoryUnified Repository MMeessssaaggee  MMaannaaggeerrMMeessssaaggee  MMaannaaggeerrService ManagerService Manager

High 
Availability
Clustering &

Caching

High 
Availability
Clustering &

Caching

Operations, 
Administration 

and 
Management

Operations, 
Administration 

and 
Management

J2EE 
Container

J2EE 
Container

Security
Manger
Security
Manger

Connectivity
: JMS/Web 

Service

Connectivity
: JMS/Web 

Service

User Integration
Portal FrameworkPortal Framework

Multi-channelMulti-channel

CollaborationCollaboration

Interaction  ManagementInteraction  Management

Process Integration
Business Process ManagementBusiness Process Management

Information Integration
Business IntelligenceBusiness Intelligence

Content  ManagementContent  Management

Data and Information ManagementData and Information Management

D
ep

lo
y

D
e

si
g

n
D

e
v

e
lo

p
Te

st
D

e
p

lo
y

D
e

si
g

n
D

e
v

e
lo

p
Te

st
D

e
p

lo
y

Figure 1.2:  The Portal model

Middleware’s progress

5



reason for that to be true). As  a result of its extensive
investment in its own .NET technology, Microsoft is finally
in an excellent position to sell its technology and products
— particularly to departments and small or medium size
enterprises. Interest in larger enterprises remains modest so
far, but there is plenty of money to be made outside large
enterprises.

What is now happening to the Application Server market is
that the medium-sized vendors are being squeezed:

at the low end by the Open Source commodity
software business
in the middle by Microsoft
at the high end by the likes of ourselves, IBM
and Oracle.

The next 2-5 years
My feeling is that the next 2-5 years are going to be con-
centrated around three particular technologies:

Portal (Figure 1.2)
Process Management (Figure 1.3) 
Web Services and SOA (Figure 1.4).

The most immediate of these, in my opinion, are portal
technologies. Portals have really been the success story of

Web-based applications, both within and outside  organi-
zations. The ‘self service portal’ — whether it is an internal
HR portal for employees or a customer-facing portal for
those interacting with the business — appeals to nearly all
organizations. Portals now represent probably the largest
and some of the most successful Web-based applications. 

Is there any unique technology behind a portal? Some
would argue not. But my view is that there are a couple of
characteristics to consider. A portal exploits the Web
browser for the user interface. You could even argue that a
portal is a process technology specifically designed for
screens — irrespective of whether these are traditional
3270 mainframe ones or modern browsers. As part of this
you need a unique kind of flow control, enabling the
required pieces of many applications to come together on
the screen fairly easily. 

In addition, a portal allows you to take the difficult back
end integration problem and present the end user with a
solution that assists the user visually to integrate the pieces
— even if there is no real integration at the back end(s).
When a user has his or her portal, the details on the screen
arrive from multiple different applications. The user now
can aggregate all the information needed on the screen to
be able to do his or her job. 

To me portals are ‘integration on the glass’ or front-end

Receive RFQ
from Customer

Request
Inventory

Receive
Inventory

Determine
Shipper

Calculate
Pricing

Send Quote
to Customer

Retrieve
Customer Data

Enterprise
DB

Call 2nd

work flow

Receive result

async
Web
Svc

SOAP 
message

start

end

SOAP 
message

Figure 1.3: Process Management

6



integration. Traditional integration occurs at the back end,
between applications.

Moving on in time, I do think that process technology is
also going to make a big difference. Why? Because the big
problem that people have had whenever they have tried to
build mega-applications is that you end up putting them
together with ‘spit and baling wire’ and there isn’t a lot of
help in terms of tools or easily-understood technologies. 

The idea, therefore, of work flow (which is not new) makes
sense, especially if the work flow is not about documents
(which is where work flow originated) but about orches-
trating business processes. What work flow has brought to
the table are reasonable tools for people to understand the
actual business processes that underpin their organizations. 

The key to me is to separate the business process logic
from the IT logic that implements a specific business com-
ponent. This is one of the ways that a Service Oriented
Architecture (SOA) can help. If we do this, I feel there will
be a real return on investment for those organizations that
are prepared to take the time to understand their business
processes and then how these processes might be archi-
tected using an external ‘process manager’ and re-usable
business components, implemented as services. 

Finally, the idea behind Web Services, as a technology for 

implementing SOA, is simple, elegant and certainly not
new. The Internet may be new but Web Service  technol-
ogy also has many things going for it that its earlier prede-
cessors (DCOM, CORBA, DCE and others) lacked. 

First, from a technical point of view, Web Services recog-
nized that the right way to optimize communications was
between enterprises — not just within each enterprise.
With this came the realization that the optimal communi-
cation style was not RPC; but rather that it was messaging.
Messaging technology, which is inherently based on loose-
coupling, is much less brittle as well as more amenable to
change, and vastly more flexible.

To me, accepting these two thoughts will have a real
impact — because the effect is to architect for change up
front, which makes everything more adaptable to change
as time goes by. To support my thinking, just look at the
Internet. One of the reasons it has been so successful: it is
that it is very adaptable to change. In the absence of central
control, no other approach could have succeeded.

That is not to say that all is rosy. The downside of message-
based application programming is that it is hard. If you look
at JMS or MQSeries or any other messaging engine, these
are highly efficient and do a great job when they are run-
ning. But the current state of the art is they are not simple
to program.

Faster cycle time 
from business 

need to 
production—

and back

Business 
User/Analyst

Business 
monitoring

0

10

20

30

40

50

60

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

Production Environment
Integrated with legacy systems through standard interfaces, in a
Services Oriented Architecture
Unified management and security
Scale in performance and reliability based on demand

Ease of development 
and deployment 

built for mass adoption

Application Developer/ 
System Programmer

Dynamically changed 
by non-programmers, 
via business rules, policies 
and/or data

Figure 1.4:  The Web Service goal

Middleware’s progress

7



Why is this? One factor undoubtedly is that most of today’s
application developers were brought up to use tightly-cou-
pled, synchronous programming models. This is not sur-
prising. Arguably, it is inherently simpler to understand
subroutines (the genesis of RPC), which are an essential
element of nearly all programming languages. 

But the result is that we have a pre-established mindset one
which understands what a subroutine is and what it can
do. In contrast, the messaging paradigm is not one that
most people encounter when first learning a programming
language. Since most developers begin with a program-
ming language, this naturally predisposes them to the
tightly-coupled approach. 

Indeed, I would suggest that there is a real opportunity for
somebody to figure out how to support messaging with
the kind of tooling that is available for tightly-coupled solu-
tions. If this can be done in as simple a way that Visual
Basic transformed client/server programming, corporate
developers will be able to deliver loosely-coupled designs,
supporting applications that are loosely-coupled and which
utilize messaging technology underneath. BEA’s WebLogic
Workshop is an example of a development tool which is
targeted to building these types of applications. 

We would then have the best of both worlds. With loosely-
coupled designs you gain an architecture that scales as well
as one that is amenable to change. From an implementa-
tion point of view, if tooling supports the loosely-coupled
model adequately, you have the ability to build applications
more quickly using existing knowledge. Furthermore, you
are far more likely to achieve re-use as well as many of the
other kinds of benefits that IT people have been discussing
for years.

Essentially, this is the technical promise of Web Services.
But there is more. Web Services do not possess the open
conflict in the market that was so clear when CORBA was
trying to win acceptance and Microsoft espoused a com-
peting technology (COM). Then Sun introduced Java, as
the ‘only needed programming language and a much eas-
ier solution’.This was not exactly a recipe for ubiquity.

Web Services seems to be an exception in the evolution of
software technology. It has today or, at least appears to
have, all the major players behind its fundamental concepts
and these are committed to making it a success. 

Nevertheless, the problems that Web Services are trying to
solve are truly complex. There are many different technolo-
gies involved as well as multiple different vendors engaged
plus more than 20 specifications at last count, most of

which have yet to be delivered to a standards body. This
helps to explain why the standardization process is going
so slowly. 

It is certainly true we are not there yet. But, from my per-
spective of managing BEA’s Web Services initiatives and
support, I do believe we will get there — later rather than
sooner but with some spectacularly complicated issues
resolved for the long term.

Standards
Standards matter. They have always mattered. But in my
role at BEA, I see them as mattering ever more — for ven-
dors and customers. This is a new reality that, I think,
almost every organization involved with IT recognizes.

Is this a major change? Sometimes, although this depends
largely on the organization involved. But increasingly I see
that the most fundamental disagreements are about which
standards you should have, rather than about the principle
of standards.

And there are other non-technical reasons to believe that
standards really matter. I cannot think of a single major IT
vendor that is not participating in the standardization
process, even those who have not done so in the
past.There is a growing recognition that, in order to be suc-
cessful in the enterprise, standardization is something we
must all pay attention to. This is equally true for both the
large and small, regardless of one’s current position in the
marketplace for, as we have seen in the past, the status
quo does not remain that way forever. It is all too painfully
possible to be on the inside today and on the outside
tomorrow.

While it is good news that almost everybody is engaged,
that could also be bad news — because it means there are
many differing, sometimes conflicting objectives. Standards
are necessarily both an economic-political process as much
as a technical one. Everybody has an agenda which they
are trying to manage in a way that gains them maximum
advantage. 

One result of this has been the proliferation of standards
organizations. This I do not consider to be good. In fact it is
particularly frustrating — and almost every day you hear of
yet another one. In practice this means we have to be
highly selective in deciding which organizations are most
likely to be important and will help us achieve our business
objectives — and which ones are not going to be relevant.
This decision usually needs to be taken long before the
‘right’ answer is obvious. 

8



Deciding among them, therefore, is not simple. There are
so many possibilities — and so few clear boundaries
between them. One of the reasons there are few clear
boundaries is that none of these organizations knows how
to recognize their job is complete, declare victory — and
then abolish themselves. Instead, with their original mission
accomplished, they seek out new problems to keep them-
selves going. If only they would adopt a policy of self-
redundancy. 

The net result is that the old organizations continue and
new ones just keep getting created. This is particularly
wasteful of very scarce, but very good, talent.

Lessons learned
One of the aspects most different about working at a com-
pany the size of BEA and working at a giant like IBM is that
you can’t do everything. BEA — being ‘only’ a $1B com-
pany — needs to be much more selective about what it
chooses to do and it has very little opportunity to ‘cover its
bets’ by engaging in competing alternatives. 

When you work in a company the size of IBM, you can
engage in almost everything — and you can reasonably
expect that you will be engaged in the right things because
all your bases can be covered. That means that you can
afford mistakes and you expect to make them. When you
are smaller, the imperative to place bets on the right tech-
nologies and on the correct standards activities is much
greater. In addition, you have to be right most of the time
— because you do not have the resources to cover the
competing alternatives. 

So one of the most important lessons I have learned is to be
much more selective in what you decide to do. You need to
think hard about:

what your agenda really is
how best to accomplish it
how to leverage partnerships
how to work with others in the industry. 

One must also acquire a thick skin. This has two facets, to:

deal with those who refuse to understand that
you cannot do everything 

have a sense for when to change position if
the ‘market winds’ change. 

My second lesson learned has come directly from cus-
tomers. It is obvious, once you think about it, that cus-
tomers are interested in solutions that work and solve their
business problems. This keeps getting reinforced as we go
forward. Technology is a means to an end, not the end in
itself — a concept that is often difficult for technical people
to accept. Increasingly I see us as needing to couch the
solutions we wish to offer, and the decisions that we are
required to make, in terms of the specific business prob-
lems our customers are facing. 

The third lesson that I have learned from my involvement
with BEA in dealing with customers is the importance of
partnerships. BEA is not a one-stop shop and never will be
a one-stop shop. However, customers still need complete
solutions. This means that we have to work with others in
our industry if we are to meet our customers’ expectations
(and thereby be successful in the marketplace). 

There is no doubt in my mind that success today comes not
only from being able to deliver our own technology effec-
tively but also from being able to combine what we have
with what others have to create a complete experience —
from technology through marketing, support and sales —
to satisfy what the customers want and need. This may not
be original but it matters more and more in today’s middle-
ware arena.

Management conclusion
During a long career in IT, Mr Cobb has seen many devel-
opments across many platforms. This gives him a most use-
ful perspective when working with middleware and Web
Services. He possesses the context to see what is construc-
tive and new — and what may be re-inventing the 
wheel.

In this discussion, he has covered how middleware has
evolved from uncertain beginnings towards Web Services.
That these Web Services are another means to deliver inte-
gration of existing application systems is a dimension that
many forget, or choose to forget. Yet this is the require-
ment which must be satisfied if Web Services are to realize
the aspirations that customers have. 

Middleware’s progress

9



Web Services standards

process: coming off the rails?

Tom Welsh
Consultant

Management Introduction
Since the advent of Web Services four years ago, it appears that IBM and Microsoft
have found a way of circumventing the standards consortia. Neither can afford, or are
able, to lay down its own proprietary ‘standards’ any more. But both of them, acting
jointly, may be able to do so. 

In the past three years, IBM and Microsoft have published dozens of WS-* specifica-
tions, which all fit into a grand Web Services architectural vision. There is only one small
problem: that vision is not endorsed by any standards body. It is beginning to look as if
IBM and Microsoft are setting up a quasi-duopoly, at least as regards Web Services. No
other vendors — and certainly no users — have much say when it comes to making
critical decisions about these specifications. 

As Tom Welsh discusses, there are serious risks to this approach. Too many specifica-
tions are being created too quickly, and the dependencies between many of them have
not been fully understood. As a result, a whole new consortium — the Web Services
Interoperability Organization (WS-I) — has had to be established, to paper over the
many cracks in the multitude of WS-* specifications.

10

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2005 Spectrum Reports Limited



Boring but useful: 
software standards consortia
How true it is that ‘familiarity breeds contempt’. We have
all heard of the bad old days when computer manufactur-
ers created their own rules, like so many giant dinosaurs
stamping through the steaming jungles of the Old Com-
puting Age. But who feels gratitude or appreciation for the
open standards that, today, protect us from a return to
those days?

Speaking on World Standards Day (14 October 2003),
European Union Commissioner Erkki Liikanen made the
case for standards in the following words.

“Open standards are important to help create interopera-
ble and affordable solutions for everybody. They also pro-
mote competition by setting up a technical playing field
that is level to all market players. This means lower costs for
enterprises and, ultimately, the consumer.”

Fair access to the marketplace, and lower costs all round —
how can that be bad? Yet open standards for software did
not become commonplace until about 20 years ago. As
recently as 1970 the IT industry consisted essentially of
‘IBM and the seven dwarves’ — Burroughs, Control Data,
General Electric, Honeywell, RCA, Scientific Data Systems
and Univac. Each company had its own installed base of
customers, who had invested heavily in that particular ven-
dor’s hardware and could scarcely afford to contemplate
changing suppliers.

At that time, software was barely on the brink of becoming
an independent industry. Operating systems, database
management systems and other ‘packages’ came from the
hardware vendors. Of course, each vendor’s software was
entirely incompatible with anyone else’s hardware (or soft-
ware). 

Even in those early days, there were some standards bod-
ies. But these were not dedicated to software — or even to
computing. When the precursor to the American National
Standards Institute (ANSI) was founded in 1918, one of its
first initiatives concerned the standardization of pipe
threads. Later, after the Second World War, it joined with
the standards bodies of 25 other countries to set up the
International Organization for Standardization (ISO). ANSI
and ISO were responsible for the first wave of global, ven-
dor-neutral software standards: those for programming
languages included FORTRAN, COBOL and, later, SQL. 

For whatever reason, the 1980s witnessed a rapid increase
in the number of standards consortia. Perhaps it was stim-
ulated by the appearance of UNIX and associated specifica-

tions, such as those for the Internet protocols. Previously, if
you bought a computer you had to get the associated
operating system from that computer’s manufacturer. By
1980, UNIX was becoming a free or low-cost alternative —
and it ran on more and more types of hardware.

This led to the infamous ‘UNIX wars’ of the late 1980s, in
which groups of manufacturers ganged up in rival cliques,
each of which attempted to establish its brand of UNIX as
the global standard. This debacle is still blamed for UNIX’s
failure to become as dominant as many had expected. As
much as anything, the UNIX wars forced vendors to admit
to themselves that it might be better — in Benjamin
Franklin’s words — to hang together rather than to hang
separately. 

This gradually led to a grudging acceptance of the benefits
of standardization and many standards ‘bodies’, including:

the European Computer Manufacturers’ Associ-
ation (ECMA), which dates back to 1961
X/Open, which was founded in 1984
the Internet Engineering Task Force (IETF),
founded in 1986
the Object Management Group (OMG),
founded in 1989
the Organization for the Advancement of
Structured Information Standards (OASIS),
founded in 1993
the World Wide Web Consortium (W3C),
founded in 1994
the Java Community Process (JCP), founded in
1998

to name but some.

Even while signing up for membership of standards consor-
tia, some vendors seemed to have their fingers crossed.
They co-operated reluctantly, seemingly always ready to
break away on their own if commercial advantage beck-
oned. Even their customers, who might seem to have most
to gain from vendor-neutral standards, did not always see
things that way. Carl Cargill, author of a 1989 book on
standardization, described an all-too-common reaction:

“To complicate matters further, in IT standardization, users
rarely participate on standards committees and are virtually
absent from the accredited [standards-developing organi-
zations]. The cost of participation is prohibitive for most
users but, perhaps more importantly, users tend to be less
focused on long-term IT standards than they are on the use
of standards to provide solutions for business problems,
both current and future. As a result, they feel that the activ-

Web Services standards process: coming off the rails?

11



ities of the standards committees have little relevance for
them.”

To make matters worse, the big vendors — and especially
market leaders — tended to dislike open standards. In their
case, the problem lay in the specific effects highlighted by
Liikanen: create a level playing field and you lower costs for
users. But the whole point of being a market leader is that
you are trying to keep the playing field tilted in your favor,
enabling you to continue charge higher prices.

Like everything else in engineering, IT standards involve
trade-offs:

on the one hand they lower barriers to entry,
promote competition and reduce the costs that
users have to pay
on the other hand (in addition to exasperating
leading vendors), they tend to slow down the
pace of innovation, are open to all the usual
criticisms levelled against committees and are
extremely expensive (for vendors) to support.

One proprietary vendor bad; 
two proprietary vendors good?
Among the proprietary ‘dinosaurs’, IBM stood head and
shoulders above all others. From its System/360 hardware
and OS/360 operating system to CICS, IMS and SNA, it was
(and still is) the quintessential proprietary vendor. Indeed,
one of its greatest practical problems arises from its very
success in laying down and promoting proprietary de facto
‘standards’. After only a couple of decades, there were too
many of them. 

By the 1980s IBM found itself embarking on an apparently
hopeless search for the Holy Grail of transparent interoper-
ation between its many diverse operating systems and
other software platforms. This was known as SAA (for Sys-
tems Application Architecture), where the objective was to
harness IBM’s own disparate offerings — from MVS to VM
to OS/400 to OS/2 and related elements. 

Microsoft, which eventually became second only to IBM  —
before overtaking it (IBM) in the realm of software — was
more exposed when it came to the issue of respecting
open standards. IBM at least had the excuse that most of
its business was in hardware, which everyone expected to
be proprietary. Moreover, it had been around for decades,
and therefore had a lot of ‘legacy’ architectures which
were irretrievably proprietary. In comparison, Microsoft
specialized in software and, although founded in 1974,
only entered the limelight after 1980 when it became the

single source for MS-DOS, the operating system for what
was then known as the IBM PC.

DOS was a success; its successor (Windows) eventually
became one too, after many years in the wilderness. Then
along came Word and Excel, and the relatively robust Win-
dows NT — each, in its own way, demonstrating
Microsoft’s remarkable ability to learn from others and
then, what is more, to profit from that learning.

What Microsoft had come up with, astute observers soon
noticed, was a strategy for embracing and extending other
people’s ideas — whether these took the form of software
products or open standards. In due course, and from a
position of strength, this strategy evolved into what some
described as “embrace, extend and extinguish” (or EEE).
Wikipedia, the online encyclopedia, describes EEE pithily:

“The three stages of the EEE strategy appear to be unfold-
ing as follows:

”Embrace: Microsoft publicly announces that
they are (sic) going to support a standard.
They assign employees to work with the stan-
dards bodies, such as the W3C and the IETF.
”Extend: They do support the standard, at
least partially, but start adding Microsoft-only
extensions of the standard to their products.
They argue that they are trying only to add
value for their customers, who want them to
provide these features.
”Extinguish: Through various means, such as
driving use of their extended standard through
their server products and developer tools, they
increase use of the proprietary extensions to
the point that competitors who do not follow
the Microsoft version of the standard cannot
compete. Unfortunately, the Microsoft version
uses proprietary technologies such as ActiveX
that places competitors at a distinct disadvan-
tage. The Microsoft standard then becomes the
only standard that matters in practical terms,
because it allows the company to control the
industry by controlling the standard.”

Many specific examples have been adduced; among the
most prominent are:

HTML
JavaScript
Kerberos
the Basic and C++ languages
SMB networking

12



Active Directory. 

There is even evidence that Microsoft was in the early
stages of an EEE manoeuvre against Java when Sun over-
turned the board by launching a lawsuit.

If an industry watcher had been told in, say, 1999 that IBM
and Microsoft would soon be collaborating closely on a
major software initiative, the natural reaction would have
been sheer disbelief. Throughout the 1990s, IBM never
gave up struggling against Microsoft. When it finally
became clear that OS/2 was doomed, it ported its best
development products to Windows in the hope of winning
the battle at that level. As soon as Linux and Java emerged
as credible platforms, IBM seized on them and deployed
them as weapons in the war against Microsoft.

When Dave Winer and Don Box brought the raw idea of
Web Services to Microsoft in 1998, they hardly expected to
get a hearing at all. Instead, Microsoft grabbed the ball and
ran with it. 

By early 2000, Web Services were at the heart of the com-
pany’s brand-new .NET strategy. That is when IBM sur-
prised the industry by joining Microsoft, instead of lining up
against it. 

In May 2000 IBM (and Lotus, by now a division of IBM Soft-
ware) joined Microsoft, DevelopMentor and UserLand in

submitting SOAP 1.1 — the first Web service specification
— to W3C.

Indeed, if you look at the first ten Web Service specifica-
tions and the companies that wrote them, you obtain a list
that looks like this:

SOAP: IBM, Microsoft, Lotus, DevelopMentor
and UserLand (Figure 2.1)
UDDI: IBM, Microsoft and Ariba (Figure 2.2)
WSDL: IBM and Microsoft
WS-Inspection: IBM and Microsoft
WS-Security: IBM, Microsoft and VeriSign
WS-Coordination: IBM, Microsoft and BEA
WS-Transaction: IBM, Microsoft and BEA
BPEL4WS: IBM, Microsoft and BEA
WS-Reliable Messaging: IBM, Microsoft, BEA
and TIBCO
WS-Addressing: IBM, Microsoft and BEA.

A pattern emerging?
Can you see a pattern emerging? Sometimes IBM and
Microsoft publish specifications jointly, with no other con-
tributors. Sometimes there are one or more others — usu-
ally companies with a special expertise (and reputation) in
the relevant field. Thus, Ariba — an e-commerce pioneer
— was associated with UDDI, a specification for global
directories that would be necessary for e-commerce. 

HTTP Post

SOAP Envelope

SOAP Body

SOAP Head

Figure 2.1: SOAP

Web Services standards process: coming off the rails?

13



Likewise, VeriSign was brought in to co-author the core
security specification, and BEA and TIBCO for those related
to transaction processing and reliable messaging.

In a still more ominous pattern of behavior, IBM and
Microsoft seemed in little hurry to submit their specifica-
tions to standards bodies. In the early days they did give
SOAP and WSDL to W3C — which took the responsibility
seriously and plunged into a three year long period of study
and discussion before adopting SOAP 1.2 as a Recommen-
dation in June 2003.

Whether concerned about the delays, or unhappy with
W3C’s desire to tackle the associated design problems at a
fundamental level, IBM and Microsoft then turned sharply
away from it. UDDI was initially given its own organization,
before gravitating to OASIS — where it was soon followed
by BPEL and WS-Security. Recently, however, the Big Two
have returned to W3C, submitting WS-Addressing for its
consideration.

It soon became evident that IBM and Microsoft had a new
policy for dealing with standards bodies. Instead of taking a
problem to a consortium and setting up mechanisms for
analyzing the problem and devising suitable standards,
they have taken to publishing their own joint specifications
and revising them repeatedly. Giving a specification to a
standards consortium now looks more and more like a
final, perfunctory rubber stamping of work that they (IBM
and Microsoft) deem to be already essentially complete.

While IBM, Microsoft and their partners claimed that they
could not afford to wait for standards bodies to deliberate
at length — and even cited the wishes of customers in sup-
port of their bilateral initiative — it is clear that other
motives might be at work. For example, the longer they
kept full control of a specification, the more time they
would have to develop products that would support it.

Consider this extract from the April 2002 paper “Business
Process Standards For Web Services” by David O’Riordan,
co-founder and Chief Architect of Bind Systems.
“Microsoft and IBM are clearly moving towards a set of
specifications that would address both B2B and EAI
requirements. It has been widely speculated that they will
collaborate to produce a single proposal or set of proposals
in this space that could then be submitted to the W3C for
inclusion in its Web Services architecture stack in the
process layer.

“There are, however, significant obstacles to be overcome
for this to happen. Technical obstacles include the different
approaches to control flow modeling (in XLANG control

flow is described using a block-structured approach best
represented graphically using flow charts, while WSFL uses
a state-transition approach best represented graphically
using UML activity or state graphs). This is not just an argu-
ment about the technical merits of the respective
approaches — both vendors have significant investments in
these technologies in their respective product lines (Web-
Sphere from IBM and BizTalk from Microsoft).”

Naturally, other vendors took a dim view of this nascent
quasi-duopoly. Presently, some of them began publishing
their own specifications. Almost inevitably these usually
clashed with those of IBM and Microsoft. It was difficult,
however, for any rival group to muster enough credibility
seriously to challenge the world’s two leading software
vendors when these two were working together. 

One example suffices. Fujitsu, Oracle, Sun, Hitachi, NEC
and Sonic published WS-Reliability in January 2003, and
submitted it to a newly-formed OASIS Technical Commit-
tee in February that year. IBM and Microsoft had appar-
ently been out-manoeuvred this time. Not for long,
however: in March 2003, together with BEA and TIBCO,
they published their own WS-Reliable Messaging, which
covered the same ground as WS-Reliability but in a com-
pletely incompatible way. Thus, users of reliable Web Ser-
vices would be able to use either WS-Reliability or
WS-Reliable Messaging — but not both.

It had seemed as if Fujitsu, Oracle and their partners had
the upper hand, as their specification had been accepted
by OASIS. This impression was reinforced recently, when
WS-Reliability was formally adopted as an OASIS Open
Standard. 

However, IBM and Microsoft still refuse to accept it. The
reasoning behind this peculiar decision was explained in a
Microsoft document that was sent to various supporters of
WS-Reliability — in mid-2003: “A core requirement that
drives the WS-ReliableMessaging specification is maintain-
ing architectural cohesion within the specification and in
relation to other Web Services specifications (WS-Security,
Policy, and so on) and composability with other specifica-
tions that describe assurances (for example WS-Transac-
tions). It is therefore very hard to proceed on final design of
any one particular specification without commensurate
progress on the others. Separating this specification’s
process from the other Web Services specifications it com-
poses with would harm the goals of composability and
architectural coherence. A litmus test for the web services
architecture is bone fide interoperability and composability
demonstrated between various implementations from sev-
eral vendors.”

14



Microsoft and IBM believe that the WS-* stack that they
have constructed must be the starting point for any new
work. For this reason, they are prepared to shun the pro-
ceedings of any standards body that does not accept their
whole WS-* stack — past, present and future.

Meanwhile, the OASIS Web Services Reliable Messaging
Technical Committee (WSRM-TC) takes the view that it
should not build in dependencies on proprietary specifica-
tions (defined as those not submitted to, or created within,
a standards body). Unfortunately, not only WS-Reliable
Messaging but several of IBM and Microsoft’s other specifi-
cations on which it depends, fall into this category.

The supporters of WS-Reliability and WS-Reliable Messag-
ing have thus fallen into a classic deadlock: 

the former have had their specification blessed
as an industry standard, although it is incom-
patible with the framework proposed by IBM
and Microsoft
the latter rely on their enormous prestige and
commercial influence to outweigh the author-
ity of an OASIS standard.

The strange tale of the Web Services
Interoperability Organization (WS-I)
By the end of 2001 there were dozens of SOAP products. 

Developers were becoming concerned about interoperabil-
ity. Even the major toolkits — like those from Apache, IBM
and Microsoft — did not always see eye to eye. 

When experts began drawing up cookbooks to help devel-
opers write interoperable Web Services, some common
advice emerged. For instance, for two implementations to
interoperate they would have to agree on:

a common wire transport
the same version of XML Schema
the same version of SOAP
the same version of WSDL
the same message format. 

There were literally scores of ways to break interoperability.
Furthermore, many of these were poorly (if at all) docu-
mented.

To address this problem methodically, the Web Services
Interoperability Organization (WS-I) was founded in Febru-
ary 2002 by:

Accenture
BEA
Fujitsu
HP
IBM
Intel

UDDI Registry
Inquiry

Publish

Figure 2.2:  UDDI

Web Services standards process: coming off the rails?

15



Microsoft
Oracle
SAP. 

These nine companies automatically became board mem-
bers. Sun, however, was not invited to join the WS-I board,
precipitating a scandal that was to last for months. A wide-
spread perception arose that IBM and Microsoft wanted to
run things their way, and neither of them saw any point in
having Sun around to confuse the issue with its (often
rather different) ideas.

WS-I was chartered “to promote Web Services interoper-
ability across platforms, applications, and programming
languages” (Figure 2.3). This might come as a surprise to
those who thought that the whole point of Web Services
was to guarantee interoperability out of the box. Explicitly
denying that it was a standards body of any kind, WS-I
declined to introduce a certification program. That would
be too costly and slow. 

Instead, it set out to provide profiles, sample implementa-
tions and guidelines. In short, it is the first industry consor-
tium ever set up exclusively to review the work of other
industry consortia and recommend ways of using them
safely.

In its first 33 months of existence, WS-I has produced:

a Basic Profile
a working draft of a Basic Security Profile
a couple of ancillary Profiles
a set of sample applications and testing tools. 

The Profiles contain much useful guidance about how to
implement inter-operable Web Services. But they only deal
with a few of the oldest core specifications — such as
SOAP, WSDL, UDDI and Web Services Security in its most
basic form. Moreover, they inevitably lag the publication of
the latest specifications by a minimum period, which expe-
rience shows to be (typically) more than a year.

Since the foundation of WS-I, Tom Glover of IBM has been
president and chairman, and Christopher Kurt of Microsoft
secretary. It is unclear what — if any — provision there is
for changing the holders of these posts. While they remain
as they are today, it will be difficult to avoid the impression
that WS-I, too, is controlled or (at least) strongly influenced
by IBM and Microsoft.

Management conclusion
Vendor representatives have long had a field day criticizing
standards bodies. To hear them talk, you would think that
the consortia are too slow, too academic — and not nearly
responsive enough to the commercial requirements of
vendors. 

Achieve Web Services interoperability
integrate specifications
promote consistent implementations
provide a visible representation of conformance

Accelerate Web Services deployment
offer implementation guidance and best practices
deliver tools and sample applications
provide a implementer’s forum where developers can 
collaborate

Encourage Web Services adoption
build industry consensus to reduce early adopter risks
provide a forum for end users to communicate requirements
raise awareness of customer business requirements

Figure 2.3: WSI goals

16



But these complaints are ill-founded. True, the open stan-
dards process has many defects and drawbacks. But it is
still the best way of making reliable progress in the long
run. 

Winston Churchill once remarked that “No-one pretends
that democracy is perfect or all-wise. Indeed, it has been
said that democracy is the worst form of Government
except all those other forms that have been tried from time
to time”. Much the same could be said about the open
standards process. Whatever its weaknesses, it is steadier
and more reliable than the alternatives.

There is an inevitable difference between the interests of
any one company and those of the industry as a whole —
not to mention those of users world-wide. IBM and
Microsoft are naturally tempted to rush the creation of a
system of specifications, so that they can start selling Web
Service software and services on a grand scale. At the same
time, they can hardly resist the temptation of giving them-
selves a little advantage over their competitors. It seems
harmless enough; and after all, who can stop them?

The trouble is that haste really does make waste. The
world’s leading software companies should know by now
that software development — and especially software
architecture — cannot be rushed. If it is, things will go
wrong; incompatibilities will open up, and eventually every-
thing may take even longer than the standards consortia
would have needed to do a thorough job.

Web Services standards process: coming off the rails?

17



Making the mainframe

a Web Services peer player

Mark Lillycrop
Principal
Arcati Research

Management introduction
Despite the great enthusiasm for Web Services and so-called Service Oriented Architec-
tures (SOAs), it is still true that most large organizations will not move far without con-
tinuing to use the mainframe data and processes on which their businesses depend for
survival. Consequently, the use of standardized middleware to enable mainframe sys-
tems to interact with Web-facing applications is absolutely essential for the future
development of many Fortune 500 companies.

In this analysis, Mark Lillycrop:

looks at how mainframes have refused to die, because they have become
‘open’
examines how this has been achieved, by using IBM’s CICS and its Web
Services participation as an example.

18

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2005 Spectrum Reports Limited



Mainframes refuse to die away
There have been those who have predicted the demise of
the mainframe. Indeed this occurred many times over the
last fifteen years. Each time, so far, such predictions have
been proved wrong (so long as you primarily contemplate
an IBM mainframe). 

Rather than sinking irrevocably into the corporate back-
ground, and waiting to be relieved of its workload by
newer and more nimble technologies, the IBM mainframe
has continued to prove that it is irreplaceable, at least for
the foreseeable future. Its capability as a highly scaleable,
highly available transaction processing engine remains to
be challenged. Its role as the central repository of key cor-
porate data is equally secure — with anything up to 80%
of business-critical data still residing under MVS (or OS/390
or z/OS) control. 

One of the problems the industry has faced with the main-
frame is that it has remained resolutely distinct from every
other platform that has come along since. Mainframes
were always intended to:

run complex mixes of workloads, many of
these being batch-oriented
offer very high utilization rates
deliver particularly good performance for
transaction-oriented environments. 

Distributed servers tend to offer much better performance
for numerically intensive work and single applications. They
also ‘enjoy’ dramatically lower utilization rates. As such,
their value proposition is so fundamentally different that
industry pundits (and, indeed, IT vendors and users) might
be said to have spent the last decade arguing about the rel-
ative cost of ownership of chalk and cheese. 

Mainframes are open; 
their users might not be
For many years now, the mainframe has been an open
platform as well as an early adopter of open standards (this
applies, for example as much to Unisys mainframes as
much as to IBM ones). But with their distinctive skill set and
complex architectures, many mainframe users have tended
to position the platform as a separate technical entity — a
back end server in a world increasingly governed by Web
Services and peer connectivity.

Having said that, it is definitely time to draw a distinction
between:

legacy mainframe users (those who continue
to rely on the system, either internally or via
an external service company, for back-end data
and processing — but who see no prospect of
new applications for those large systems plat-
form)
strategic mainframe users (those who wish to
leverage the mainframe’s strengths to build
new Web-facing business applications). 

In both cases, it is essential for the mainframe platform to
offer some level of support for key Web Service middle-
ware. But the level of interoperability required — and the
ease of Web-facing development — will vary considerably
between these two groups.

For the ‘strategic’ group in particular, there is a strong
incentive to make the mainframe a peer player in the Web
Services arena (Figure 3.1) — so that new applications can
be created fast and positioned according to a rapidly
changing set of business criteria. This means that the main-
frame must be capable of requesting Web Services as well
as serving its data and transaction function. Without this
two way flow, users who see real benefit in leveraging the
strengths of the mainframe for new systems may face
major technical obstacles in making it happen.

CICS and Web Services
The success of the IBM mainframe in the past, and the key
to its future role in the large enterprise, comes down in no
small part to CICS — the ubiquitous transaction processing
monitor. CICS reportedly processes some 30 billion trans-
actions a day worldwide, which is not bad for a piece of
software that has just celebrated its 35th birthday. 

Much of IBM’s focus recently (and that of supportive ISVs)
has been on making CICS ready for Web Services. This has
been achieved by developing its interoperability through
the introduction of appropriate middleware components,
particularly within the XML area.

The recent announcement of CICS Transaction Server for
z/OS V3.1 seeks to position CICS much more favorably
within a Web Services environment. This announcement
focused on three key areas:

ease of integration
enhanced application transformation
performance and system management. 

The third of these areas includes the usual fine tuning to
please the systems programmers and some improvements

Making the mainframe a Web Services peer player

19



to the CICSPlex SM Web User Interface. But the most inter-
esting developments come under the first two categories.

Integration
As IBM starts to put more meat on the bones of its ‘on-
demand’ computing strategy, its prime integration objec-
tive has been to enable the re-use of CICS logic and
processes within Web Services applications — by providing
full access to standard APIs and communications protocols.
This brings it one step closer to participating fully in those
elusive Service Oriented Architectures (SOAs).

From IBM’s perspective, delivering Web Services is all about
support for XML and its associated middleware standards,
WSDL and SOAP:

WSDL (Web Services Description Language) is
an XML-formatted language used to describe a
Web Service’s capabilities — basically a defini-
tion of the service
SOAP (Simple Open Access Protocol) is a light-
weight protocol for exchange of information. 

These two standards have grown out of a joint develop-
ment between Microsoft and IBM, and are widely deployed
together. SOAP has been available as an add-on function
to CICS for 18 months now, attracting some 800 users

who are keen to use SOAP to help simplify the manage-
ment of transactions and calls between CICS and the dis-
tributed world. In V3.1 SOAP becomes a standard feature,
working alongside more heavyweight transport mecha-
nisms such as WebSphere MQ (MQSeries).

The strongest message to come out of V3.1 is that CICS
can act not only as a provider of services but as a requester
too. This latter function is far less mature. One reason is
that much of the IT industry’s attention has, so far, been
concentrated on unlocking the existing data and function-
ality already held within a CICS sub-system — in effect to
facilitate distributed applications to tap into what exists. 

The added requester capability opens up a new role for
CICS — potentially allowing it to deploy Web Services in
ways that will be of particular interest to strategic main-
frame users. Among such users is Charles Schwab, long
considered to be one of IBM’s most influential mainframe
customers, which was quoted at the announcement as say-
ing: “we need IBM to enable CICS as a service provider and
eventually as a consumer, and look forward to the day
when CICS is fully Web Services enabled.” 

To achieve this server/requester capability, CICS TS V3.1
includes a number of features for distributed transaction
co-ordination, using WSDL to define the services. There is
also a new tool, CICS Web Services Assistant — a 

Definition: A Web Service is a software system identified by a URI, whose public 
interfaces and bindings are defined and described using XML. Its definition can 
be discovered by other software systems. These systems may then interact with 
the Web service in a manner prescribed by its definition, using XML based 
messages conveyed by internet protocols.

Web Services Description Language (WSDL) allows enterprise application 
services to be described in one standard form regardless of the hosting platform 
– WebSphere, CICS, .Net,....

CICS hosted services can be published alongside Web Services hosted on any 
other platform

WSDL accommodates optimizations – for example, binding other than 
SOAP/HTTP

Figure 3.1: What is a Web Service?

20



build-time capability provided to create a WSDL document
from a simple language structure or a language structure
from an existing WSDL document (with support for
COBOL, C/C++ and PL/I). 

Another enhancement to integration in V3.1 is improved
HTTP support. Significantly, the new CICS version is compli-
ant with HTTP 1.1, with outbound support added — once
again confirming the role of CICS as both server and
requester (Figures 3.2 and 3.3). 

Additional new Web Service capabilities for CICS include:

persistent sessions (as a default for inter-
actions between CICS and a remote partner)
support for pipelining and chunking of mes-
sages. 

The third key component of CICS’ Web Service integration
is security. As well as support for Secure Sockets Layer (SSL)
3.0 over IP, the new technology offers a range of key func-
tions which will enable closer control of security within a
Web Services environment. These include:

AES cipher suites with 128/256-bit encryption
certificate revocation lists
closer control of session IDs across a mixed sys-
plex
support for mixed-case passwords. 

There is a strong sense here that IBM is trying to address
many of the security management issues that can cause an
obstacle when building bridges between CICS and distrib-
uted Web Services. These are significant steps forward.

Application transformation
The other set of announcements for CICS TS V3.1 focuses
on development tools. These seek to remove some of the
programming limitations that have traditionally hampered
the integration of CICS into a Web Services environ-
ment. 

For example, the enhancements to C/C++ support bring
their performance up to the same level as applications writ-
ten in COBOL, PL/I, and Assembler. WebSphere Enterprise
Studio Developer has gained higher prominence as a uni-
versal development solution, while the Open Transaction
Environment has been extended with support for COBOL,
PL/I, Assembler and non-XPLink C/C++ OPENAPI applica-
tion programs. 

But the main development thrust in V3.1 is tackling the ver-
boseness of XML, which is becoming a real problem for
those CICS applications attempting to process parameter
data in XML and other memory-hungry formats. While the
optimized data formats that have traditionally been 
handled by CICS could easily cope with the 32KB 
COMMAREA limit, XML carries far more baggage. 

CICS TS V3.1CICS TS V3.1
User TransactionUser Transaction

Data mapping

Business
Logic

Pipeline

handlers

handlers

handlers
PIPELINEPIPELINE

WEB SERVICEWEB SERVICE

dynamic
install

dynamic
install

HFSHFS

WSBindWSBind

WSDLWSDL

pipeline
config

pipeline
config

WSED or CICS 
provided utility
WSED or CICS 

provided utility

Service
Provider

SOAP messageSOAP messageSOAP message

Language
structure
Language
structure

Figure 3.2:  CICS as a Web Services Requestor (Source: IBM)

Making the mainframe a Web Services peer player

21



IBM has consequently introduced the concept of containers
and channels. These can handle inter-program data trans-
fer much more flexibly than through a COMMAREA. CICS
now provides EXEC API verbs to create and access these
new transfer mechanisms.

All singing, all dancing?
All of these boil down to a major shake-up of CICS’ periph-
eral functionality. This produces many more choices as to
the way that host/Web solutions can be implemented in
the future. 

When it comes to opening up CICS applications to make
their processes and data available to other platforms, there
are already many options available to users. Even where
IBM leaves gaps in its function set, these are still rapidly
filled by independent software vendors — and CICS is no
exception. For years companies such as Seagull, Attach-
mate, NetManage, NEON Systems and Clientsoft (the latter
two having just merged) have offered services and prod-
ucts to customers attempting to integrate CICS applica-
tions with Web Services. 

For some of these, V3.1 may be viewed as a significant
threat. However, as Web Integration analyst Anura Guruge
points out in his recent paper on the IT InDepth.com web-
site, there is still a question of granularity here: the 

all-singing all-dancing solution that is being proposed by
IBM might not be ideal in all cases. “Until now, when it has
come to CICS and Web Services much of the interest has
been about representing specific transactions, or even sub-
transactions, as separate Web Services. This is what Web-
to-host host integration has been all about and from what
I can see will continue to be all about. V3.1 does not, in my
opinion, reduce the need for traditional host integration
solutions such as NetManage’s OnWeb 7.1 or even IBM’s
HATS v5 (though HATS still tends to lean more towards
host publishing). Conventional host integration which relies
on specific transaction capture, using the input/output
fields displayed by a CICS application, provides the granu-
larity to isolate and pick specific transactions from within a
CICS application and then convert that to a Web 
Service.”

In other words, V3.1 offers a whole range of new possibili-
ties for CICS customers and, for the first time (within IBM’s
own product portfolio), this improvement really does
enable a CICS application to be represented as a Web Ser-
vice (Figure 3.3). However, in many cases, a more granular,
transaction-focused approach to integration may be
required; here there are a number of third-party solutions
that can be employed.

Moreover, IBM itself points out that customers must make
important choices between:

HFSHFS

WSDLWSDL

WSBindWSBind

WSED or CICS
provided utility
WSED or CICS

provided utility

WEB SERVICEWEB SERVICE

pipeline
config

pipeline
config

URIMAPURIMAP

CICS TS V3.1CICS TS V3.1TCPIPSERVICETCPIPSERVICE

CPIHCPIHCWXNCWXN
Service

Requester

URIMAP
matching
URIMAP

matching

CSOLCSOL

Pipeline

handlers

handlers

handlers

SOAP messageSOAP messageSOAP message

Data mapping

Business
Logic

Language
structure
Language
structure

dynamic
install

dynamic
install

dynamic
install

dynamic
install

PIPELINEPIPELINE

Figure 3.3:  CICS as a Web Services Provider (Source: IBM)

22



traditional host CICS connectivity
the kind of distributed Web functionality sup-
ported by V3.1. 

For developers in established MVS (z/OS) shops, a direct
connection to CICS still offers superior quality of service
and software maturity, as well as fewer APIs and system
changes. The loosely-connected Web route into CICS is a
better option for those looking to stay as open (as possible)
to emerging Web standards, and who envisage frequent
re-use of logic.

CICS as a peer player
What we see, then, is IBM laying the groundwork for CICS
to act as a peer player in Web-oriented applications. With
CICS enabled to function as server or requester, and full
support provided for integration and security services
within the Web environment, users will be able to take a
considerably more flexible approach in re-purposing and
extending CICS functions. 

As IBM has said, the choice of Web-oriented or direct CICS
connectivity depends on a number of factors — and these
factors may change as 

Web standards mature and mainframe support
for them improves 
the availability, performance and cost charac-
teristics and requirements for a given process
or application change over time. 

The choice of a centralized host solution for new business
logic may become more or less attractive depending on
changes within an organization — mergers and acquisi-
tions, changes in policy or cost and technical constraints.
Certainly it is in IBM’s interests to make sure that CICS (as
well as other key mainframe sub-systems) remains as open
and receptive as possible to new developments. But this
will be achieved not by placing the mainframe back in the
center of the IT architecture but by making it as flexible and
as interoperable as other Web Service peers.

Of course, as mentioned earlier, there are significant num-
bers of legacy mainframe users around whose main priority
is to migrate specific applications to different platforms

with as little negative impact on the business as possible.
They may face numerous problems in maintaining inter-
program connectivity during the migration process —par-
ticularly if the move is incremental, and modules that make
calls on one another need to keep track of location
changes. 

As Jody Hunt of Iona points out in his paper entitled ‘Incre-
mental application migration with Web Services’ (Enter-
prise Data Center, January 2005) there are various issues
that arise in such scenarios, including changes in data for-
mat, backup and recovery and security. Service oriented
architectures offer a number of ways to support incremen-
tal change, by providing a flexible mechanism for inter-pro-
gram communication. But for this to work effectively
within a large enterprise, users need to be thinking about a
much more sophisticated solution than those offered by
vanilla WSDL implementations. 

Strategic mainframe users want the ability to use CICS logic
more flexibly within the corporate network, and that is
what IBM is beginning to provide. Of course, this is only the
first step, and the earlier quote from Charles Schwab sug-
gests that it is expecting considerably more in future
releases. In particular, IBM is likely to build on the WSDL
support it has provided so far, by adding support for more
protocols as well as focusing on switching and routing and
location transparency. 

Management conclusion
The signposts are now in place to show how CICS is now a
credible peer player in Web Services, although this is a fast-
moving field. There will certainly be more announcements
to come. But, wherever users sit on the spectrum between
strategic and legacy mainframe deployment, there is no
doubt that recent CICS developments will remove many of
the existing limitations to Web Service implementation. 

IBM, of course, hopes that these improvements will gener-
ate new mainframe business among customers that are
attracted by the declining cost of mainframe technology
and the potential scalability and availability characteristics.
One thing is for sure, though: the chasm that once sepa-
rated the MVS-z/OS architecture from that of other plat-
forms is closing fast.

Making the mainframe a Web Services peer player

23



Service management

Dr Keith Jones
IBM Software Solutions Worldwide

Management introduction
Many enterprises have now started to acquire Web Service skills and have implemented
early Web Service projects. As these projects have become more numerous and more
focused on core business functions there is a compelling motivation to invest in man-
agement solutions that monitor and manage services in line with business goals.

Many enterprises also understand the value of longer term strategies that match
investment in Service Oriented Architectures (SOA) for the infrastructure to support
applications and integration with greater business responsiveness and flexibility. Long
term realization of an SOA is not the same however, as an initial investment in pilot
Web Service projects. A critical element of that longer term view is a systems manage-
ment capability that is based upon the correct layering and encapsulation which can
deliver improved alignment between IT resources and business objects.

In this analysis Keith Jones reviews recent developments in service middleware and
management technologies and looks forward to the capabilities that will deliver well-
rounded SOA solutions. Success in achieving well managed service oriented systems
architecture involves a fundamental change in approach to management — a move
away from vertical stove-pipes and toward horizontal layers of re-usable resources.

24

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2005 Spectrum Reports Limited



Feeling the pulse
Management of IT systems has matured over the last 40
years and is by now one of the most sophisticated of all dis-
ciplines in enterprises, both large and small, around the
world. During those 40 years, hardware and software tech-
nologies have evolved — producing an enormous variety of
devices, connectivity options, processor types, storage hier-
archies, batch processes, distributed computing processes,
work flows, Web applications and many additional forms
manageable IT resources. These are ‘enterprise systems
resources’ (Figure 4.1).

These IT resources — often distributed widely across divi-
sions, regions, and in some cases continents — are the fab-
ric of enterprise systems today. Management of both
hardware and software resources has become both a com-
plex and sophisticated aspect of aligning IT resources with
business goals for many enterprises.

That said, most management applications are often consid-
ered to be part of the overall middleware infrastructure —
neither quite business application logic nor operating sys-
tem logic. What distinguishes management applications
from business applications is that they focus on IT
resources, their properties and relationships — and not on
the real world goods and services provided by an enter-
prise. 

There is, however, one very significant connection.
Whereas business applications model the real world opera-
tion of the enterprise at some level, management applica-
tions model, measure and manipulate the operation of the
IT implementation for those business applications. Let me
illustrate:

one of the functions of an order processing
application is to create orders
a corresponding order processing management
application monitors the implementation to
ensure that order creation functions correctly
and efficiently.

Management applications are fundamentally based upon a
control feedback loop. There is a clean separation of
responsibilities between resources, monitors and managers
in this loop:

the monitors observe resource behavior and
raise alerts when that behavior is outside a
predicted range
the managers react to alerts by adjusting pro-
visioning for the resource and taking corrective
actions to restore normal operations.

Take the order processing example one step further. Orders
are processed whilst an order processing monitor measures
success and failure rates and order processing time. When
orders arrive at an increasing rate more computing
resources are consumed and the monitor issues an alert
when order processing time exceeds an acceptable thresh-
old. The order processing manager may react to such an
alert by provisioning additional order processing server
capacity.

As management applications become more sophisticated,
so the metrics are refined, the boundaries and thresholds
are normalized, the alerts are specialized and management
reactions are fine tuned to business needs. The greater the
level of sophistication in pre-coded management capability,
the more ‘autonomic’ the infrastructure becomes — and
the more self-managing IT operations become.

Most enterprises have complex heterogeneous application
systems with mixed capabilities for management of those
systems. With basic resource life cycle support, monitoring
and measurement support and some level of problem
detection and correction it is possible to feel the pulse of a
business through the eyes and ears of its management
applications.

Management by layers
Certainly one way to address management of IT resources
is top-to-bottom and in vertical slices. This approach
matches the needs of departments and divisions that act as
cost centers or that wish to assert autonomy over a specific
set of resources. Examples of this can be found in almost
every enterprise. Purchasing departmental systems are
often managed this way.

The problem with this vertical approach is there are often
significant efficiencies to be had from pooling or ‘virtualiz-
ing’ resources horizontally as they are allocated dynamically
in reaction to demand — and not statically as occurs when
most departmental budgets are set. A horizontal approach
to the management of IT resources — management by lay-
ers — would seem to be more logical, from many points of
view. 

The recent rise in popularity of Service Oriented Architec-
ture for business systems has introduced a new focus on
horizontal layering of IT resources (Figure 4.2). At the ser-
vice layer, service interfaces are identified to encapsulate
legacy and other application components as core business
functions, and a mechanism is suggested for horizontal
integration of systems that were once vertical stove-
pipes. 

Service management

25



At the process layer, service interfaces are invoked as flows
to handle critical business activities. An order processing
flow might:

create new orders
allocate or requisition inventory
activate billing by invoking the appropriate
services 

that are implemented (in turn) using legacy application pro-
grams and databases. At the business model layer it
becomes possible to monitor and manage the landscape of
flows that implement major business processes. 

The introduction of service interfaces and composite
process flows suggests a new way to manage IT resources,
monitor business activity and measure effectiveness in hor-
izontal layers. At the same time it also suggests that
resources can be managed discretely to meet the needs of
core business processes — in effect, bringing IT operations
into closer alignment with business operations.

Some of the more sophisticated techniques now being
applied at the lower (component) layers may be applied in
time to the higher layers. For example, autonomic comput-
ing is now being introduced in IBM platforms at the lowest
layers to manage automatically component failure detec-
tion and recovery. 

Logically some of these same sophisticated management
strategies will be applied to higher layers in time, giving rise
to autonomic services and business processes. But for most
enterprises, this vision remains several years in the future. 

What has to be done now to bring the benefits forward?
For most, the vertical management applications must
evolve to:

recognize a service-based partitioning of IT
resources and business activity
provide new horizontal ‘dashboard’ controls
for core business processes.

The service view
Services introduce new sets of IT resources. These must be
managed together with existing legacy resources (Figure
4.3). 

Even though many aspects of service software are being
standardized, the artifacts actually created in deployed sys-
tems are not standard. Unfortunately a different set of
implementation artifacts are likely to be found on each of
the major vendor platforms that support services — such
as:

service descriptions

Legacy Systems

Partner Network

User Network

MOM Network

Figure 4.1:  Enterprise System Resources

26



service registries
service endpoints
service gateways
service implementations. 

Service interfaces are some of the key architectural compo-
nents that must be carefully managed. Lifetime support for
construction, discovery, evolutionary change and destruc-
tion of service interfaces in middleware infrastructures is
critical to success. Management of versioning for service
interface artifacts across deployment platforms is particu-
larly critical to long term deployment of service systems.

In this picture, each service interface has a description that
conforms to the W3C WSDL standard containing defini-
tions of XML types, messages, operations, bindings and
endpoints. Each of these artifacts becomes a manageable
IT resource once the service is deployed in addition to the
resources that are needed for a specific service implemen-
tation (Figure 4.3). In many cases a service interface is an
encapsulating layer used to provide access to application
components that are already conventionally managed
resources.

Additional operations, new bindings, updated endpoint
configurations and many other changes may be made dur-
ing the lifetime of a given service. Management applica-
tions must not only recognize a service from its description

but also understand all the artifacts, their properties and
the relationships between them in order to monitor and
control effectively a successful deployment.

In a typical service architecture there may be many hun-
dreds of deployed service interfaces with their implementa-
tions and an even larger number of service requesters
(clients). The middleware infrastructure for such an SOA
deployment provides secure and efficient access paths
between requesters and providers. 

In sophisticated scenarios a ‘Service Bus’ may be needed.
This can provide implementation and location transparency
as well as the bridge to legacy messaging systems and
applications.

Management applications for services must monitor and
manage the infrastructure carrying service traffic as well as
the configuration of service providers and requesters. This
infrastructure could be as simple as a SOAP/HTTP Web Ser-
vice connection — or it could be arbitrarily complex as it
spans departments, divisions, regions and national bound-
aries with built-in service registries, gateway connections to
business partners and a multitude of sophisticated adapters
for legacy integration.

Another service artifact that is critical to success is the ser-
vice level agreement (SLA). Whilst implemented differently

Business Model

Process Layer

Component Layer

Service Layer

Figure 4.2:  A Service Oriented Layered Architecture

Service management

27



on every service platform. Such an agreement specifies the
qualities of services offered by a provider and accepted by a
requester. Management applications must be available to
monitor and enforce operational compliance with service
level agreements as they are deployed.

Such management applications will most often monitor
services for availability, failure rates and performance char-
acteristics. Other more sophisticated qualities of service
may also be monitored and managed in time, such as secu-
rity contracts and breaches (unauthorized access), integrity
contracts and breaches (message replay) and transactional
contracts and failures as they occur.

The combination of service providers, service requesters,
service infrastructure and service management capabilities
together comprise the future for service-oriented IT opera-
tions. But how will such operations mature in the coming
years to provide the sophistication needed to support
industry-leading and truly responsive business systems? 

Collective wisdom
One of the many forces at work is a standardization project
at OASIS that is focused on Web Services Distributed Man-
agement (WS-DM). This project is supported by most of the
traditional management vendors (including Hewlett-
Packard, Computer Associates, IBM and many others) and

some newer vendors (for example, Amberpoint or West-
bridge) which are focused on Web Services management. 

The far-reaching objective of this project is to define a stan-
dard way to integrate the management of all IT resources,
using Web Services. The approach being developed would
allow for resources of all types to be managed using service
interfaces — even if those resources are also services in
their own right.

WS-DM recognizes that all IT resources have properties
that reflect current state and interfaces that accept com-
mands to change that state during the normal course of an
operational lifecycle. The service management architecture
being developed (Figure 4.4) cleanly separates concerns
between management applications, resource managers
and resources in a manner similar to earlier management
standards such as SNMP, WBEM and DMTF.

In this architecture the management application is a con-
sumer of management information coming from one or
more resource managers (called ‘manageability end-
points’). Each resource manager has a service interface that
complies with WS-DM specifications: this may be used to
monitor and manage one or more resources. 

Access to internal resource state is assumed to be possible
using resource-specific APIs. Where a resource is actually 

Service 
Interface

Service 
Implementation

Service Bus

Service Registry

Service 
Endpoint

Figure 4.3:  Service Artifacts

28



also a service it is possible, but not required, to compose
the manageability interface with the functional service
interface.

The development of this standard approach to manage-
ment promises to deliver a migration path for existing man-
agement applications into the service era as well as provide
design patterns for new applications that will focus on ser-
vices and flows in the context of core business processes. 

Unfortunately this new standard is not yet ready for wide-
spread adoption. Realistically it will take some, or many,
months fully to be developed and then obtain agree-
ment.

Emerging solutions
Many enterprises have already started to define and imple-
ment their strategy for services. These have, by now,
deployed into production only a relatively small number of
Web Services. This factor alone has limited the need for,
and therefore the size of, a marketplace for service man-
agement products. 

Another constraining factor continues to be the stark real-
ization that deployed service artifacts differ from platform
to platform. Thus different management products are
needed for different vendor platforms.

Recent surveys have shown that the most popular service
deployment platforms are already well established applica-
tion server platforms like IBM’s WebSphere Application
Server (WAS), BEA’s WebLogic and Microsoft’s .NET —
which have all evolved to become ‘service-aware’. It should
be no surprise, therefore, that the emerging service man-
agement solutions are already well established manage-
ment products that are designed to monitor and control
the artifacts deployed on those platforms. 

As the development and deployment middleware plat-
forms become more service-capable it is to be expected
that they will include service management function. For
example, WAS V6, made available at the end of 2004,
includes basic autonomic capabilities and common event
infrastructure that will assist plug-in J2EE management
solutions. IBM’s Tivoli Monitors, HP’s OpenView, CA’s
WSDM and other established management products will
undoubtedly soon evolve to become more service capable.

There are also many other vendor packages emerging with
service capabilities in support of early adopters of SOA.
Amberpoint, Westbridge, Blue Titan, CapeClear, Infravio
and many others now offer solutions for selected aspects
of service management for popular development and
deployment platforms. As the marketplace for such solu-
tions grows, the number of vendors offering management
capabilities will also continue to grow. 

Resource 
Manager

Management 
Application

Resource

Management 
interface:
- identity
- metrics
- state

Figure 4.4:  Service Management Architecture

Service management

29



The long term trend that underlies the evolution of this ser-
vice capability is the fast expanding use of meta-data to
capture information which models application components
as they are developed and later deployed into production
(Figure 4.5). The use of meta-data to support inter-locking
development and deployment lifecycles is an important
step on the road to highly automated systems for the
future that are based on semantics.

IBM’s Rational, as well as many other vendors of develop-
ment tools, are converging over time on a single develop-
ment platform based on the Eclipse.org open standard.
Eclipse platforms incorporate a plug-in framework and
meta-data language that is easily translated into UML, XML
or Java executable code. 

The WAS deployment platforms are also to converge over
time on a single set of middleware components that are
meta-data driven. Long term we can expect to see auto-
mated management function in these platforms and
sophisticated development tools based on meta-data that
models services and their implementations as well as the
infrastructure on which they run.

Management conclusion
Systems management applications have been developed to
a high degree of sophistication over several decades and

have embraced several fundamentally different technolo-
gies in their day — structured modular programming,
client/server systems, message-oriented systems, distrib-
uted object oriented systems. Service-oriented systems will
be no different. However, as more and more enterprises
migrate to service oriented architectures there will be a sig-
nificant opportunity to change approach to management
of IT resources away from a vertical cost-center view to a
more horizontal business process/competitive advantage
oriented discipline.

Service interfaces for core business function have been pro-
posed as the boundary of choice for identifying units of re-
use for optimal time to market and the mechanism of
choice for the integration of heterogeneous application
systems for responsiveness in an ‘on demand’ world. A sig-
nificant body of vendors and users are now aligned behind
open standards initiatives to realize these benefits, whilst
preserving the value of choice between competing solu-
tions.

The development of standards for management at OASIS is
a current and well supported initiative that aspires to
deliver a migration path for established vendor manage-
ment solutions as well as provide opportunities for vendors
wishing to enter the service management marketplace with
new offerings. The draft WS-Distributed Management
standard is designed to exploit other proposed or already

Meta DataDeploy Monitor

Optimize

Configure

Test

Assemble

Build

Model

Service Development
Lifecycle

Service 
Deployment Lifecycle

Figure 4.5:  Interlaced Service Lifecycles

30



agreed standards for Web Services — such as XML, SOAP,
WSDL, WS-Resource Framework and WS-Addressing.

There are also emerging solutions for service management
being made available by leading vendors — both estab-
lished ones — such as IBM and HP — and new ones, such
as Amberpoint and Westbridge. At the same time service
infrastructure tools and middleware products are also
emerging. 

The future for these and related solutions looks well set to
becoming more and more intelligent as they converge of a
consistent set of semantics for services in the future.

Service management

31



Enterprise Service Bus — 

buzz term or business winner,

techno-babble or critical

enabler?

Nick Denning
Chief Technology Officer
Strategic Thought

Management introduction
Many business executives still do not believe that they receive good value for money
from their IT expenditure. So much financial and management resource has been
expended over the years — often implementing and re-implementing the same func-
tionality in what appears to be the latest new technology fashion — that much credi-
bility has been lost. Such a style of evolution seems to have added little and wasted
much.

There have been two main drivers for embarking on such re-implementations in new
technologies. The ‘original’ application may have become too expensive to maintain
because it was not properly architected at the start and/or was developed piece-meal
subsequently. Alternatively there may be a requirement to change technology that
effectively mandates a complete re-write into the new technology.

As the associated risks are significant, it is important to find an approach that can
enable a business to be supported in a more effective, manageable and timely manner.
For some organizations the use of infrastructure may be appropriate.

32

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2005 Spectrum Reports Limited



In this analysis, Nick Denning considers many of the factors
that need consideration if any infrastructure initiative —
like an Enterprise Service Bus (ESB) — is going to succeed.
As he observes, an ESB is a potentially useful technology
but it will likely be irrelevant if there are not the organiza-
tional and architectural foundations in place to enable its
exploitation. 

He addresses the needs under the following broad head-
ings:

the case for software infrastructure
the ESB dimension
processes and road maps
supporting the business and quality culture
standards
the point of an architecture, and obstacles to
introducing an architecture
architecture — top down and bottom up
no magic wand.

The case for software infrastructure 
In a previous analysis (MIDDLEWARESPECTRA, February
2004, page 18) I suggested that there is no ‘one size fits all’
infrastructure solution for all organizations, and that each
must implement a solution appropriate to itself. I do not
seek to try to offer ‘a universal answer’ here but by pre-
senting a road map, I hope to identify the possible paths
that a sophisticated business can take if it is to have a rea-
sonable chance of success. 

To achieve success it is necessary to focus on the factors
that relate to the way in which sophisticated organizations
design, purchase and deploy technology infrastructure.
Their key aim is to obtain specific business advantage from
the use of IT, and this applies to both users and vendors,
for both need this type of software.

That said, many significant challenges face IT within busi-
nesses. For one, there is rarely sufficient time, or resource,
to solve the ‘whole problem’ in any single project. This
means that it is extremely difficult to take a process-based
view and then implement that across a whole business. 

Such an approach requires change to be implemented in
ways that involve all departments. The consequent change
management and technical rollout problems are frequently
too large to be handled with on a single project. 

The system designer, when reviewing the ‘must, should
and could’ requirements, frequently only has time to imple-
ment the ‘must’ and a few of the ‘should’ requirements.

Significant technology risk is also introduced if that system
designer simultaneously introduces new technologies
which are unfamiliar. 

The common result has been that the typical approach
used delivers individual stove pipe solutions (Figure 5.1)
which each offer specific capabilities within a functional
business area — and use a minimum number of technol-
ogy layers (to contain the risks). Unfortunately, the result-
ing individual stove pipes can be both numerous, quite tall
and use different software products. In addition, there is
seldom the time to layer each stove pipe to facilitate re-use.
Indeed the justification for re-use may be weak if such re-
use of modules is not planned, especially if one or more
subsequent projects use alternative technologies (or buy
off the shelf solutions).

This reality has become increasingly unacceptable in large
user organizations. It is no longer acceptable to possess a
plethora of technologies and applications where duplica-
tion abounds or where business logic is continually re-writ-
ten, often inconsistently, using different technologies and
incurring high costs. 

Neither is it acceptable to preside over an infrastructure
that is fragile and brittle, where change is expensive and
time consuming so that IT cannot respond appropriately to
changing business requirements. Yet large businesses have
to improve their ability to exploit IT to deliver competitive
advantage.

If that describes the IT user, for an application provider (typ-
ically a software vendor) the problem is similar but subtly
different. The application provider does not want to use
too much third party technology — because the percent-
age of the price of the solution sold can end up being dom-
inated by the infrastructure cost (this assumes that an end
user organization has not already purchased the software
infrastructure). When standard infrastructures are deployed
in user customers, this situation will alter (but that is not yet
the situation). 

For example, bearing in mind that it takes 3-5 years to
develop a successful application solution and establish it in
the market place, it will be some time yet before even
today’s successful application vendors can expect cus-
tomers to possess an infrastructure on which they (the ven-
dors) can depend. 

Thus, currently, software suppliers aim to minimize reliance
on third party technologies. The result is that much infra-
structure code is created, and re-created, by software ven-
dors. 

Enterprise Service Bus – buzz term or business winner ...

33



Thus both suppliers and end users contribute to the confu-
sion in software infrastructure yet both can benefit from
the adoption of standard infrastructures. This is an advan-
tage that acceptance of a few (very few) forms of Enter-
prise Service Bus should provide, if the concept is adopted
broadly enough. 

The ESB dimension
That said, is an ESB just techno-babble or a critical enabler?
Are we just discussing more buzz words or an approach
that can be a business winner? 

The problem I perceive is that there is a risk that many ESB
initiatives will not deliver. This is because an ESB is not a
product, though software products are required to imple-
ment one. Rather it is a design approach, even a concept or
template which requires expertise and time to implement. 

Before deciding to adopt an ESB, it is the view of Strategic
Thought (based on our client experience) that each organi-
zation should determine:

whether there is a need for that organization
to develop its own architecture
the extent to which electronic integration is
required between businesses participating in
the value chain
the level of legacy technology that is not J2EE
compliant, and therefore requires integration
with a non-Java range of protocols and tech-
nologies
whether the size and complexity of the busi-
ness warrants its IT infrastructure being con-
sidered as anything other than a single large
— if multi-faceted — application.
whether there are off the shelf products avail-
able to support the business which deliver an
ESB and therefore mandate the organizational
approach.

For a small organization which cannot realistically be subdi-
vided further there is probably no real requirement to con-
sider an architecture involving an ESB. This size of
organization would typically be a single business unit.

However most large organizations are made up of multiple
business units, often using different technologies. These
are connected by complex processes which, typically, inter-
act with the processes of partners to create a value chain.
In these circumstances the use of an ESB is likely to be vital
— whether it is built in-house by that organization itself or
is acquired from one or more IT suppliers. 

With an Enterprise Service Bus, organizations should be
aiming to:

reduce costs
align investment to a business benefit
demonstrate delivery against an RoI case
empower the business to direct IT investment
maximize flexibility to support change
enable change more quickly than competitors
manage complexity.

The challenge that these organizations face lies in:

finding the technical and change management
expertise that can enable such activities
implementing a plan that is based on an
agreed justification to upgrade the use of tech-
nology in a controlled and cost effective man-
ner. 

Processes and road maps
Porter identified that “sustainable competitive advantage
comes from building a value chain that is unique, dynamic
and difficult to match”. The most important objective of
businesses is to identify, and then participate in, a value
chain. 

To achieve this there has to be an absolute focus on imple-
menting processes within an organization that are based
on standards. Furthermore, in an ideal world, such stan-
dards should also provide the basis for one organization’s
processes to interact with other processes in other organi-
zations. The trouble is, if there are no lower level building
blocks, implementing a process that can touch all aspects
of a business is a huge task.

Delivering processes works effectively in short projects if
there are underlying services that can be re-used. In this
form, a top down business process focus is supported by a
bottom up component implementation approach.

Short term process improvement must be underpinned by
a long term road map that defines an architecture to sup-
port the business, a series of projects which will deliver to
the business and against the time scales for these deliver-
ables.

The difficulty is that the initial scale of activity — to put in
place a coherent architecture — requires significant organi-
zational change moving from teams aligned by functional
stovepipes to alignment by process. Inevitably such
changes are painful, and mistakes are made. Nevertheless,

34



to me, this is an imperative for businesses that wish to
interact efficiently.

Having accepted this, it is important to avoid the construc-
tion of processes that are either too large or brittle. They
must be composed of sub-processes which can be re-used,
and must be capable of being used in different ways with-
out breaking.

Supporting the business
The challenge is to bring together people, technology and
knowledge — and exploit these assets in a balanced man-
ner. ‘One size does not fit all’ and we need separate teams
with different value sets working to different business
objectives yet still able to respect each others work. 

Yet organizations face dilemmas. For example many orga-
nizations observe the following on a regular basis:

central IT is seen as either being unresponsive
or a cost burden that individual business units
are not prepared to accept (or both)
central IT is shut down, and the skilled individ-
uals are deployed out to business units
the business imperative for business unit man-
agers is to support their own individual unit
activities, so short cuts are taken in order to 

satisfy immediate business unit (not enter-
prise) objectives
mission critical systems are developed to inap-
propriate quality standards — but they fail in a
variety of ways
the enterprise as a whole suffers, often with
significant adverse consequences to operations
(regulatory fines, lack of operational capabil-
ity, inconsistency, large numbers of applica-
tions systems that do not communicate, etc.)
business unit and/or enterprise executives are
replaced
new business executives arrive, IT is restored
as a central function
the merry go round starts again.

This is a good example of ‘one size does not fit all’. Ele-
ments of both approaches are required, but they must not
grow ‘fat’ — they constantly need to sell to their customers
and demonstrate value.

The real challenge is that, historically, businesses have orga-
nized themselves around functional silos of people doing
similar tasks in the same place. Organizations now need to
change their focus and provide management of business
processes, with people collaborating in each process across
previous organizational vertical silos. It also becomes possi-
ble, in such a scenario, to outsource those functions that 

Problem 
space

Users

Technology

Inconsistent Stovepipe solutions

Figure 5.1: The problem with stovepipe solutions

Enterprise Service Bus – buzz term or business winner ...

35



are not critical to the key processes that represent the real
value in the value chain.

Quality culture
Within this context, the ‘one size does not fit all’ still
applies. This means it is necessary to use different
approaches and attitudes to quality — and quality stan-
dards — appropriate to the task in hand. For example, the
quality procedures that apply to building the software to
control spacecraft or run nuclear power stations are differ-
ent from those applicable when writing computer games.

Within a large organization there is, therefore, a constant
need to balance the competing needs of time, cost and
quality. One of the biggest challenges Strategic Thought
finds is organizations adjusting to accept this.

Broadly, our solution is to have separate teams supporting
each business function who have differing models of the
trinity (of time, cost and quality). But this can only work if
these teams possess mutual respect and co-operate when
they need to interact.

Standards
Standardization is good because:

common products can be purchased from a
minimum number of vendors; this reduces the
costs of product purchase and maintenance, as
well as introduces common skill-sets for staff
when change is necessary there is a common
baseline from which evolution can progress,
thereby simplifying the process of change
clear definitions can be provided to potential
suppliers so that they can deploy into a recog-
nized environment (or infrastructure); if an
organization has adopted industry standards it
is probable that suppliers will understand
what exists which, in turn, will maximize the
chances of successful introduction of new ele-
ments or software
once a software infrastructure is in place it
facilitates a reduction in cost of individual com-
ponents, both existing and future ones.

However the adoption of standards is not necessarily sim-
ple. It can cause challenges if:

inappropriate standards are selected, or if
products do not exist which can be deployed
or if the skilled staff to build, operate and

work with standards are not available
inappropriate standards are adopted, after tak-
ing into account the risks to the business (the
danger is of adding excessive cost and time
through trying to attain an inappropriate level
of quality for the task involved)
standards are implemented too quickly, as
occurs if vendors have not yet implemented
the selected standards and so lack products to
deploy which exploit those selected standards
standards are chosen but then fail to evolve
(there are many examples of this, of which
DCE and CORBA are only amongst the more
recent)
standards are introduced and made mandatory
in an organization with minimal flexibility to
deviate, even when a business case can be
made for the use of products that are not fully
compliant with those accepted standards
over-engineering occurs, in order to comply
with accepted standards.

Architecture
Achieving the benefits from an architecture requires work.
The following are the major activities we believe are
required to develop an appropriate architecture:

the formation of a plan to identify the goals
and objectives of the business, the scope for
those goals to be supported and achieved
through the use of IT and the development of
a justification by which both business and IT
management can determine when it is appro-
priate for the business in question to exploit 
IT
the creation of a framework for the adoption
and use by IT of standards to apply at any
given time plus a plan for the development
and extension of the formulated architecture
over time as new technologies, standards and
conforming products become available
the establishment of a research and develop-
ment function which can investigate new tech-
nologies in order to determine when it is may
or may not be appropriate to adopt these
within the said architecture
the definition of all the IT assets of the busi-
ness, and the initiation of projects to maintain
those assets as the architecture develops.

This represents a non-trivial effort. It must also be done in
stages.

36



The architecture road map
An essential aspect of the construction of any architecture
road map is:

identifying the capabilities that will be deliv-
ered to the business over time
ascertaining the capital, and revenue, costs
which will be incurred
enabling the business to accept and operate
the capabilities that are planned for delivery
establishing, afterwards, the RoI finally
achieved
empowering the business to change its busi-
ness priorities, and hence to adjust its business
plans
assisting all participants to accept the viability
of the approach taken and, thereby, to under-
stand the contribution required.

Key to achieving these objectives is the coherent identifica-
tion of:

architectural ‘layers’
the capabilities that will be provided in each
layer
the individuals who contribute to the defini-
tion of each layer. 

Typically this involves three primary layers (Figure 5.2):

business capabilities
processes and applications
infrastructure and technology.

As relevant, however, are:

identification of the components of the archi-
tecture, the definition of the interfaces
between each of those components and the
identification of the people responsible for
each of those components
the inclusion of formal measurement mecha-
nisms to enable the results of each activity can
be reflected in subsequent architecture evolu-
tion.

Within this, an overarching management function — as the
design authority — is to:

undertake the requirements analysis, func-
tional specification and high level design of all
implementations and ongoing review of all
projects in progress to ensure that the deliver-
ables provided comply with the architecture
ensure that the architecture remains coherent,
and to take decisions where it is required to
deviate from the architecture
issue work to project teams, and acceptance of
deliverables back from those project teams.

Business, Capability 
And Process Oriented 
Discussion

Application services 
and components 
architecture

Infrastructure and third 
party products 
architecture

Segment into 
separate problem 
domains.  Each 
domain understands 
interfaces with other 
domains but not how 
each domain delivers 
its interfaces.Interfaces

Figure 5.2:  Segmenting problems

Enterprise Service Bus – buzz term or business winner ...

37



It is also essential that the architecture team undertake the
following long term functions:

IT and project risk management in support of
the overall business risk management pro-
gramme, specifically including contingency
planning and risk mitigation activity
identification and justification of corporate IT
investments that cannot be justified by any
one project
change management to minimize the impact of
IT change on business processes and maximize
the ability to support business change
interaction with HR to support training across
the organization.

Without these architecture functions it is typical to find
some or all the following:

large amounts of poorly utilized hardware and
software are purchased by individual projects
mission critical systems run on unsupported
hardware and software that incur excessive
costs to maintain (with no plan for evolving
into a supported environment)
the risk of major business disruption rises, in
the event of a failure
the lack of software licence management
results in high costs of unused software or
under licensing of software that is used (which
can have serious unplanned budgetary implica-
tions when discovered)
the inability to leverage common components
produces many separate and inconsistent
stove pipe applications which have different
data models, utilize different technologies, re-
implement common functions inconsistently,
lack intercommunication abilities and/or are
difficult to engineer into a coherent business
process
no resource exists for analysis of the full
impact of change; where the scope of a change
is not understood, there tends have a major
impact on the business when they are needed
— the danger of ‘rip and replace’ is very real
when the scope is not understood.

Implicit in a formal architecture approach, therefore, is the
evolution of that architecture over time by a series of small
initiatives which minimize risk and provide benefits. Where
no architecture exists, systems often evolve to a point
where they become unacceptably fragile plus the cost of
further modification becomes unacceptably high.

The difficulty is that there is often a temptation to scrap
such a system and replace it with a completely new one —
because the process of evolution is perceived to be too
hard. Typically this decision underestimates the difficulty of
replacement, particularly when two systems cannot be run
in parallel and data must be migrated from the old system
to the new. Generally it is only possible to do ‘rip and
replace’ economically if the business accepts that it should
change its business processes to support those that are
provided by some new system (this is one of the ‘prime
attractions’, for some, of SAP, PeopleSoft and others).

The Importance of the 80:20 rule
Pareto’s 80:20 rule says that it is possible to deliver 80% of
the capability for 20% of the cost. An organization must be
able to prioritize requirements and determine in which
phase particular requirements will be met, acknowledging
that some will never be met.

One can allow some mitigation and contingency planning
activity to minimize the risks of implementing requirements
that it transpires must be supported. But the danger is that
rearguard actions are taken by vested interests to re-intro-
duce previous requirements, causing costs to escalate.

Phased implementation permits a review of requirements
at each stage based on the 80:20 rule. This should be
mapped against business priorities and is an essential
aspect of the development of a cost effective approach.

Obstacles to 
introducing an architecture
With this weight of argument it would seem foolhardy — if
not reckless — to fail to introduce an architecture along
with the architects to manage and develop it. Regretfully
there are some significant practical obstacles to the imple-
mentation of most architectures:

adopting an architecture requires significant
organizational change; this will affect the pre-
sent incumbents of the current structure and
will (almost inevitably) encounter resistance
(which can only be overcome from the top)
to be effective any architecture team must be
the primary point of contact with the business,
define the architecture, commission projects
and act as the one design authority; to ensure
success, highly capable management and tech-
nical skills are required
any architecture must evolve using lessons
learned and be the result of a long term 

38



commitment which involves many stages as
well as the opportunity to correct errors; the
danger can be that the setting up of an archi-
tecture team sets unrealistic expectations of
what can be achieved (and shelving of the ini-
tiative as a failure if these unrealistic expecta-
tions are not satisfied)
roles and responsibilities of many staff will
change as will the criteria by which staff are
assessed; training is, therefore, required in
communication and management skills to
enable staff to adapt to new roles
significant up-front costs exist; an appropriate
level of analysis is required to understand the
overall cost structure of the business, and
mechanisms must be put in place to measure
the costs of the architecture, and the resulting
business benefits generated (otherwise the
only view of this architecture activity will be a
cost)
the absolute imperative for an architecture
team must be a focus on delivery: there is a
significant risk that an architecture team can
create an ivory tower and lose credibility; thus
an architecture team which is not responsible
for implementing its architecture, which only
performs an advisory function, is likely to 
fail.

Related to the last point is another aspect. There must be a
single ‘command’ structure responsible for delivery within
the business for which the architecture is being developed.
Fundamentally this means a single chief architect should be
responsible for a business unit (or enterprise, if this work is
done at the whole organization level). 

Strategic Thought has seen scenarios where:

multiple architects ‘in-fight’ amongst them-
selves
no lead architect exists — such as in a sub-
sidiary where there is a general acceptance
that it will follow the lead of the parent — but
no specific direction from the parent is forth-
coming.

What should be clear from this is that the obstacles to a
successful implementation of an architecture, and the ben-
efits that can accrue, are people issues rather than technol-
ogy ones. There is no point even in considering the
introduction of such an architecture (Figure 5.3) if an orga-
nization lacks the commitment.

Delivering and using an architecture
The development and use of an architecture revolves
around the following principles:

Problem 
space

Users

Technology

Process

Application Services

Data

Integration

Delivered components Planned components

Portal

Enterprise Service Bus

Figure 5.3:  Architecture

Enterprise Service Bus – buzz term or business winner ...

39



there is an architecture team responsible to the
business for the delivery of IT capability; the
team will develop the architecture to support
these requirements over the expected lifetime
of the business
an operational team will manage the produc-
tion systems on a day to day basis
development teams will be available to imple-
ment the projects defined by the architecture
team; these should be viewed as ‘sub-contrac-
tors’ by the architecture team
the architecture will be decomposed into a
business view, an application/process view and
an infrastructure view.
development must not be a capital activity 
but must be treated as revenue expenditure;
specifically this means that there must be no
‘large projects’, even with a well defined end
point — instead it is vital that all large pro-
grams are funded as a series of many small
projects
the execution of many small projects means
that expenditure must be considered as a ‘rate
of burn activity’, with each project funded
based on its own justification, and it must
deliver within that to justify further invest-
ment in subsequent projects
standards must evolve regularly, supported by
the necessary level of training and develop-
ment
these standards must ensure that there is
scope to change suppliers within a defined
period of time (if ever required)
whenever off the shelf software products are
available they should be used in preference to
custom creation
vendors must be actively managed, and
encouraged to develop and support compo-
nents that will comply with the current as well
as future architecture iterations
the architecture framework will comprise a
business, an application and a technology layer
this framework will be decomposed into com-
ponents with well defined interfaces; the
detailed design and implementation of specific
components can then be delegated to individ-
ual teams who can then focus on their specific
delivery with minimal input from other project
teams
integration and acceptance testing will be a
critical aspect of accepting deliverables from
individual project teams and deploying those
components into production

the organizational structure will be designed
to support the ability of that organization to
outsource development in a controlled manner
(though additional contract/project managers
may be required to manage this approach).

The objectives of defining a component are to:

enable individual components themselves to
utilize lower level components, thereby mini-
mizing the need to build large components
from scratch and facilitating re-use
ensure any component should be extendable,
expandable, upgradeable or otherwise be
capable of improvement within the scope of
the overall architecture with minimal and well
defined impact on the any of the components
which utilize it
ensure that any component which does not
fully comply with the architecture is able to be
included within the architecture, albeit via a
documented risk and by wrapping such a com-
ponent behind an interface that is consistent
with the architecture
facilitate the acceptance of changes which
have an impact on the business processes
maximize the flexibility of the business to
define and develop new business processes by
re-engineering its existing sub-processes.

Architecture — top down dimension
Any architecture includes the need for top down analysis.
The principles related to architecture identified above must
be addressed during this analysis. 

To deliver against these, an architecture team must:

understand the current business processes and
how they are currently implemented
determine what new business processes are
required to support business change in the
future, the time scales in which they need to
be made available, the estimated costs for
delivery, the development of a joint plan sup-
ported by a financial justification, the identifi-
cation of priorities for implementation in the
foreseeable future plus the development of a
plan for the immediate period
decompose the end to end business processes
into sub-processes which can provide the com-
ponents to re-engineer and evolve existing
business processes — by re-organizing and 

40



supplementing these sub processes while
avoiding or minimizing the change necessary
within the individual sub-processes themselves
agree with the business the mechanisms by
which new requirements will be identified and
delivered, with appropriate involvement from
the business
share ownership of the process and logical
data models with the business
identify the delivery channels required by the
business and seek to optimize the efficiency of
these data models, working with the infra-
structure team to select the appropriate infra-
structure relevant to the various channels
be responsible for risk management of IT in
conjunction with overall business risk man-
ager.

Architecture — 
bottom up (infrastructure)
Infrastructure is the bottom up function. It is involves all
aspects of the architecture related to understanding:

the current technology baseline
industry standards
relationships with suppliers
provision of a technology road map for the
evolution of the technology stack over time to
meet the needs of the business. 

The infrastructure team needs to ensure that the business
can continue to exploit technologies (particularly existing
ones) that are not compliant with the new architecture
standards. Nevertheless, its principle focus should be on:

describing and owning the technology base-
line — all the IT assets that are contained
within the business
defining the architecture, including all the
products, standards, methods and so on
looking forwards at new technologies and
assessing the implications of new technologies
on the existing architecture
determining if and when a new (or old) tech-
nology is relevant to the business
considering the impact on the current architec-
ture of upgrading the architecture and what
needs to happen to applications currently
operating
evolving current standards, to minimize the
impact on current developments of the
expected new architectures

taking responsibility for risk management to
ensure the appropriate compromise between
capability and value for money is achieved and
to practise risk mitigation activities as well as
adopt contingency plans 
owning — and continuing to update — stan-
dards, methods and guidelines associated with
the architecture, including the training associ-
ated with the adoption of the infrastructure
directing infrastructure suppliers.

The application function
The application function is required to be responsible for all
aspects of the architecture related to the delivery of sub-
processes to the business. This team is therefore responsi-
ble for all aspects of the architecture that relate to
implementation of business logic, which includes:

mapping of the logical to physical data model,
as it is represented within each of the applica-
tion repositories
defining the transformation rules, to map data
between physical models when data is
exchanged between systems as processes flow
across individual systems
abstracting business processes that run across
applications from those that operate within
specific applications
understanding of the business transactions
that take place
defining the messages that flow within each
work flow — to enable processes to cross sys-
tem boundaries
identifying of the individual components of
business logic that are executed within the
individual systems and the interfaces that are
available to each one
understanding the functions provided within
each of these application components
introducing mechanisms to manage event and
error processing, to ensure that business trans-
actions either complete (and cannot be lost) or
that errors are identified for subsequent cor-
rection or are canceled (or rolled-back) if it is
not possible to complete them from a business
perspective
adopting mechanisms for providing manage-
ment information on all transactions back to
the business.

It is critical that such an applications architecture is struc-
tured to identify:

Enterprise Service Bus – buzz term or business winner ...

41



work flows that represent a sub-flow which is
unlikely to change once delivered
super flows (those that use the sub flows) but
which can be re-engineered or supplemented
with new super-flows that exploit underlying
sub-flows to deliver new capabilities
business processes that need to be delivered
today as well as changes to business processes
that may occur over time — thereby enabling
the design of the sub-flows to take into
account possible future process requirements
as well as minimize the need for changing sub-
flows at later dates
where user interactions are required at the
boundaries of sub flows and thereby ensuring
that such user interaction can fix any mis-
match between sub-flows, thus enabling
super-flows to be constructed from sub-flows
without the need for code changes
the use of people to manage possible mis-
matches between sub flows with the needs of
straight through processing (STP), which may
be difficult to modify subsequently without
code change.

No magic wand
Make no mistake: an ESB — which can be regarded as
being the latest attempt to deliver a rationalized software
infrastructure — is not a magic wand. With an ESB it is still
possible to waste large amounts of time developing unnec-
essary complexity that does not satisfy its original financial
justification.

In the near future ESB initiatives therefore should only be
undertaken by organizations which:

can identify substantial gains from participat-
ing in a value chain
expect the competition to use such processes
as a means to establish competitive advantage
possess the necessary management resources
— and commitment — to support the change
process.
have other compelling reasons for change —
such as the requirement to outsource — which
make major business and technology change
inevitable.

The good news
The good news is that, once there are established patterns
for the development of an architecture embracing

processes supported by an ESB — and shared by all ven-
dors supplying products to create an ESB — then it will be
appropriate for less sophisticated organizations to consider
adoption. The amount of customization will fall and com-
monality will increase.

That said, implementing an architecture to deliver the ben-
efits discussed will likely require giving consideration to:

the adoption of a portal technology which pro-
vides a common interface, encapsulates all
underlying process and service logic and
removes the requirement to re-write applica-
tions only to provide a common look and feel
the introduction of a reliable infrastructure
based on ESB patterns that will provide indi-
rection to underlying services, support Web
Services standards (where appropriate), inte-
grate with legacy protocols where required
and provide interconnectivity within an orga-
nization and connection to its partners
bottom up provisioning of services that comply
with Web Services standards, by utilizing new
software and wrapping legacy services that
will be used in the future
defining a business justification for all work, as
well as basing this on a revenue model (rather
than a capital one), by implementing a number
of small projects each delivering against an
expected RoI and by adopting a model which
allows for progressive development and evolu-
tion of capability
provision of sufficient commitment to R&D to
ensure that a coherent architecture evolves
producing the necessary business management
resources to ensure that suppliers and individ-
ual project teams deliver to the requirements
of each project, and support the long term
architecture as it is evolves
accepting major changes to the organization’s
structure and way of doing business so that
this aligns with the architecture (this may
mean defining terms of reference for each
group to enable them to operate
autonomously to deliver the required compo-
nents).

Management conclusion
As Mr. Denning indicates, those who ‘hope’ that they can
introduce an ESB overnight are unlikely to be successful. A
software vendor cannot supply an ESB. An ESB is a technol-
ogy enabler for business change. Each organization must

42



first be sure that it has the appetite for, and capability to
deliver, change before investing in more technology. 

An ESB, as a manifestation of infrastructure, requires
steady progress to be successful. It needs to happen in con-
junction with business partners and suppliers as well as
one’s own colleagues within an organization. It will there-
fore be a challenge, particularly where activities are already
in play to implement an ESB to support outsourcing plans
to which the business has already committed.

Enterprise Service Bus – buzz term or business winner ...

43



Members of the 
International Advisory Board

Charles C.C. Brett
President, C3B Consulting Limited &
President, Spectrum Reports

William Donner
Fenway Partners

Kathryn Dzubeck
Executive Vice President, 
Communications Network 
Architects, Inc.

Ellen M. Hancock

Paul Hessinger
Vision UnlimITed

Pierre Hessler
Deputy General Manager,
Cap Gemini

Michael Killen
President, Killen & Associates, Inc.

Dale Kutnick
Chairman, Meta Group, Inc.

Thomas Curran
Consultant

Norris van den Berg
General Partner, JMI Equity Fund, LP

Fiona A. Winn
Managing Editor & Publisher
Spectrum Reports

Additional contributors
include:

Jay H. Lang
Distributed Computing Professionals

Keith Jones
IBM

David McGoveran
Alternative Technologies

Anura Gurugé
Consultant

Amy Wohl
Wohl Associates

Martin Healey
Technology Concepts Limited

Mark Allcock
J.P. Morgan Asset management

Aurel Kleinerman
MITEM 

Chris Cotton
Consultant

Nick Denning
Strategic Thought

Yefim Natis
Gartner Group

Mike Beeston
Maven Associates

Mark Lillycrop
Arcati

Eric Leach
ELM

Randy Rhodes & Troy Terrell
Black & Veatch

Roy Schulte
Gartner Group

Mark Whitney
Delta Technologies

Jim Johnson
Standish Group

Tom Curran
TC Management

Alfred Spector
IBM Corporation

Max Dolgicer
International Systems Group, Inc.

Peter Bye
Unisys Systems and Technology

Steve Ross-Talbot
Enigmatec

Peter Houston
Microsoft Corporation

Jeff Tash
Database Decisions

Ed Cobb
BEA Systems

Bernard Abramson
Consultant

Geoff. Norman
Xephon

Jim Gray
Microsoft Research

Wayne Duquaine
Grandview DB/DC Systems

Steve Craggs
Saint Consulting

Tom Welsh
Consultant

Gustavo Alonso
Swiss Federal  Inst. of Technology

Mike Gilbert
Micro Focus

Tony Leigh
Sensima Technologies 

MIDDLEWARESPECTRA
is published and distributed
worldwide by:

USA and Canada:
Spectrum Reports, Inc.

Subscription Center
PO Box 32510, 
Fridley, MN 55432, USA
Telephone: 763 502 8819
Fax: 763 571 8292

UK and Rest of the World:
Spectrum Reports Limited

Research and Editorial Office
St Swithun's Gate, Kingsgate Road
Winchester SO23 9QQ
England
Telephone: +44 1962 878333
Fax: +44 1962 878334

Subscription Centre
St Swithun's Gate
Kingsgate Road
Winchester SO23 9QQ
England
Telephone: +44 1962 878333
Fax: +44 1962 878334

Email and Internet

Email: 
spectrum@
middlewarespectra.com

World Wide Web:
www.middlewarespectra.com

ISSN 1356-9570

[incorporating FINANCIAL
MIDDLEWARESPECTRA
ISSN 1460-7220]


	Contents
	Middleware’s progress
	Web Services standards process: coming off the rails?
	Making the mainframe a Web Services peer player
	Service management
	Enterprise Service Bus – buzz word or business winner, techno-babble or critical enabler?


